
International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

DOI:10.5121/vlsic.2024.15301 1

DETECTION OF MODULE INTEGRATION ERRORSIN

HIERARCHICAL CIRCUIT DESIGNS

Nicholas Dematteis, Jesus Godinez, Gina Rhoads, and Maddu Karunaratne

Electrical & Computer Engineering, University of Pittsburgh, Johnstown, PA, USA

ABSTRACT

Large circuits are developed by integration of many smaller modules that have already been designed and

verified for accurate functionality. The integration phase also requires verification that the signal

connections between the integrated modules are correctly paired to produce the expected final design. The

validation of the module connectivity may be performed either visually or via simulations as part of the

verification step of the overall functionality which may not check every connection between modules

.Inadvertently some module interconnections may be in error, and neither be discovered visually nor

detected if stimulus does not cover the whole circuit. This research attempts to automate the validation of

module interconnections in a select area or the entire circuit by creating stimulus for circuit simulations.

First step in this work is to identify the types of errors that are likely to occur when individual modules are

integrated to create the final circuit. The second step is to develop a software program to create test

stimulus targeting the module interconnections so they can be simulated to produce circuit output values. If
those values deviate from what is functionally expected, then module connection errors are present

provided each module has been verified before the integration.

The research first classified the most probable alternative connections between modules into five

categories based on the structure of the given hierarchical circuit. Secondly, algorithms were developed to

enumerate possible alternatives to the interconnections between the modules in the circuit. These

alternatives were considered as faults to be detected at the circuit boundary. Thirdly, tests were generated

to detect such faults which yields external input data vectors to distinguish each potential alternative from

the given circuit connections. Detection of a fault imply that the vector applied may be used for simulation
of an equivalent behaviour or functional model of the circuit to obtain expected boundary values which

would reveal whether the alternative is the correct connection or not. The test vectors were simulated

against all the enumerated alternative connections (classified as faults) of the entire circuit to ensure each

vector is productive in detecting a fault. The developed software was tested on a series of small circuits

and appropriate benchmark circuits with great success. The generated test vectors distinguished (detected)

77% to 100% of all potential alternative interconnections between the modules in the circuits.

KEYWORDS

Design Error, Module Interconnections, Test Generation, Fault Model, Fault Simulation

1. INTRODUCTION

Verification is time consuming although it is an integral part of digital circuit design, in which a
designer develops data stimuli (vectors) to apply to the circuit boundary in order to see how it

produces results at the output terminals. This circuit boundary may be either external at the

highest hierarchy level or at a lower module boundary. The stimulus is applied to the circuit via

logical simulations and the designer compares the produced results against the expected values.
The comparison may be integrated as part of the simulation environment. This process is repeated

until the designer is satisfied that the circuit meets the high-level requirements of the system.

While the simulation models of the circuit can automate the comparison process, it does not

https://airccse.org/journal/vlsi/vol14.html
https://doi.org/10.5121/vlsic.2024.15301

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

2

eliminate the effort in developing the test vectors to apply. To compound this issue, when
multiple circuit modules are integrated together at multiple hierarchy levels, the interconnection

and feedback paths may introduce some manual editing errors into the design which may escape

detection if the test stimuli are not thorough enough.

Published research articles are available in very broad categories and most of those focus on

finding and correcting errors in manufactured circuits. Some authors have put forth research into

design errors in specific categories of circuits under various circumstances. Kang and Szygenda
[1, 2] described many different design errors but did not cover hierarchical modules, boundary

mismatches and resulting sequential loops, or tri state gates where three value logic is

needed.Huang [3] analyzed stuck at faults in sequential circuits in an attempt to diagnose design
errors in such circuits. Chang [4] did similar research but constrained the analysis to the circuit

layout level only. Other research [5] used mathematical models to determine what went wrong in

the designor to implement error correction schemes built into the circuit itself rather than

detection via simulation.

In this research we developed a method and accompanying software that would detect common

module interconnection mistakes for generic hierarchical circuit designs using external stimuli,
with the goal of reducing the effort required for verification of the integrated circuit. We assume

that each individual low-level module is accurate by design but their interconnections in making

larger modules in a hierarchical design may introduce occasional port connection errors.
Therefore, some or a few module connections in a given circuit design may not be correct and an

alternate connection might have been the right design intention. This research work developed

algorithms to identify and enumerate possible alternative connections, and software was

developed to produce effective test stimuli to show different outcomes in the simulation values
that depend on each distinct alternate connection. The test stimulus is comprehensive for the

designer to reliably determine if connections among modules in the design are correct as intended

or not.

In keeping up with test generation terminology, we use the word fault to refer to a possible

alternative connection between two ports among interconnected modules in the given circuit.

However, one or more connections of the given hierarchical circuit may be wrong, and one or
more alternate connections, which are referred to as faults, might have been the design intention.

The essential idea of fault detection in this work is to develop test stimuli that differentiates each

single interconnection between two modules from its each alternative connection. Then the
designer can determine whether the given circuit or an alternative is the right connection.

We identified five different fault types as the first phase. We also developed signal values needed
to make the faults sensitive locally between module connections. In the second phase, software

was written to create those signal values and propagate differential value pairs through the circuit

to detect faults at the external boundary. The value pairs might be on a single signal line as in

stuck at fault testing or on two different lines. We applied the software to benchmark circuits to
obtain results on its effectiveness.

Section 2 of this paper describes the identification of alternate interconnections referred to as
fault models in this work. It also explains signal value pairs required to sensitize alternatives

(faults) with respect to the given gate level circuit. In Section 3 we briefly describe the

implementation of the research work by software automation to compile, enumerate potential
faults, create tests, and to simulate faults concurrently. Section 4 describes the nature of the

circuits used for the experiment and includes summary of the data. Finally, the conclusion is

given in Section 5.

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

3

2. INTERCONNECTION FAULT MODELS

As mentioned earlier, an alternative connection between two module instances may be the correct

or the intended connection by the designer rather than the connection in the given circuit. We

classify those alternate connections as faults. If an alternate connection between two ports is the

intention, then their connection in the given circuit is in error. The most probable module
interconnect errors can be classified into five different types, A through E. Together these

classifications can account for nearly all module connection errors in hierarchical circuit designs.

Additionally, having distinct classification allows them to be analyzed individually in order to
determine the best way to distinguish the alternatives, i.e. detect the faults. Modules at a lower

hierarchical level are typically created by design automation tools and higher-level modules are

assembled by designers. Even the lower-level modules may include other modules in addition to

logic elements as shown in Figure 1.

Modules in Figure 2 are hierarchical modules, themselves containing instances of modules shown

in Figure 1. The figures depict module names and their instance names which appear after the
colon (:) such as k0 appearing in HA:k0 in Figure 2(b) which is a half adder module in its

functionality. The circuit model shown in Figure 3 illustrates the highest level (top level) of a

circuit that will be used as an example to help depict the five different fault types described in
this work. We used the modules shown in Figure 1 and Figure 2 with additional logic elements to

build the larger circuit named MIR in Figure 3. The EHA module used the HA module once as

shown in Figure 2(b), and the MIR circuit also used an instance of HA module which is named

insha in Figure 3. MIR circuit has ports A0, B0, A1, and B1 acting as external inputs while Y0,
Y1, Y2, and Y3 signals act as external output ports. Multiple signal sets are represented as a

vector for clarity such as {A0,B0,A1,B1} to represent the A0, B0, A1, and B1 signal set.

.

Figure 1. Example modules built with logic elements.

During the simulations a designer typically monitors the ports at higher levels of a circuit which

may or may not be at the top level. In order to detect a potential error, the effect of that error, in

the form of a pair of data values (desired value and actual value) must be made to appear at the
erroneous locations. Here the actual value refers to the simulated value of the given circuit which

may be incorrect if an alternative module connection is the correct one. Those value pairs then

must be propagated via simulation to the circuit boundary being monitored to collect simulation

data. In this work, we need to see values on alternate connections that are different from values
on the connections of the given circuit. By originating that discrepancy on the possible

misconnect site and propagating it further toward the circuit boundary, we can detect the fault.

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

4

Figure 2. Example modules built with predesigned modules and logic elements.

2.1. Type-A Fault Model

A module integration fault of Type-A occurs when either an input port or output port of a module
instance integrated as a component in building another module does not have a connection to a

wire or a port that provides a driving signal. Figure 4 illustrates this as a separate instance of AM

module used in Figure 3. If the circuit is described in a text-based hardware language (VHDL,
Verilog, etc.) and processed using design automation tools, the initial compiling stage will detect

any faults of this type and therefore no further exploration is needed for this type of potential

errors.

Figure 3. Top level circuit (MIR) built with other modules and logic elements.

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

5

Figure 4. Type A fault – Unconnected ports. Port T and Q are not connected.

2.2. Type-B Fault Model

This error may occur when two or more output ports or internal signals are driven by a single port

of a module instance. An example occurs in the output of PM module in Figure 2 at Q and R

ports. It may occur in conjunction with Type-A faults depending on the module makeup of the
circuit. Figure 5 shows the alternative connections where (b) and (c) yield two distinct circuits.

In order to evaluate the potential error (fault) of port c of module m inside PM not driving t3

signal via the signal R. To detect that fault, a test stimulus producing opposing values, 01 (or 10)
on the {t2,t3} pair is needed. This requires port c and signal w to receive 01 (or 10) respectively,

to sensitize the potential faults. The differential effect of 01 vs 10 (or 10 vs 01) on {t2,t3} signal

pair must be propagated through the circuit using external test vectors as typical in test patten

generation. This validation may be extended by having alternative connections to any output port
from the unconnected signal which produces three alternative (faulty) circuits for this example.

Figure 5. Type B fault – a single signal drives multiple ports with a signal left unconnected.

2.3. Type-C Fault Model

A fixed logic value, either 1 or 0, at an input port of a module instance is considered a potential
integration error and categorized as a Type-C fault. This configuration is illustrated in Figure 6

with the AM module that is also in the MIR circuit shown in Figure 3. Detecting whether this is

intent, or mistake requires originating the opposite value at the fault location and propagating it

through. Similar to Type-A faults, Type-C faults will generally be flagged by software
automation tool developed in the initial compilation stages.

Figure 6. Type C fault – flipped logic constant.

2.4. Type-D Fault Model

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

6

A module integration fault of Type-D occurs when adjacent ports of a module are swapped with

respect to the intended connections. Figure 7(a) depicts the interconnections of the insha instance

of the HA module in the circuit of Figure 3. In the given circuit, the signal pair {t4,B1} is

connected to {a,b} pair, and {c,s} pair is connected to {t6,t7} pair. Figure 7(b) contains two
potential Type-D faults, one occurring at the input ports of swapped {B1,t4} to {a,b} pair, and

the other at the output ports of swapped {c,s} to {t7, t6} signal pair.

Detecting a Type-D fault requires placing opposing pairs of values, 01 (or 10), at the

corresponding swapped ports on {t6,t7} pair which is similar to Type-B fault detections. These

ports may be input or output ports of a module or at the topmost boundary. The swapped pair of
connections (the fault) is created virtually within the simulator to carry out the simulation of the

given circuit and the alternative as two different circuits. This is a typical concurrent simulation

of differential circuits without creating two completely alternative circuits and simulating the

entire circuit for each enumerated fault.

Figure 7. Type D fault – swapped port pairs on a module boundary.

2.5. Type-E Fault Model

When a set of signals outside of a module is being connected to the ports of that module, the

designer may inadvertently create a wrong connection. While it is possible the erroneous

connection may be random, we consider it to be a shifted connection for simplicity. This situation
is classified as a Type-E fault. A Type-E fault occurring on only two ports may be reduced into a

Type-D fault. Figure 8(a) shows three single line interconnections going from {P,Q,R} output

ports of PM module to two other modules via the signals marked {t1,t2,t3}, respectively, which

feed input ports of two other modules, EHA and AM. Figure 8(b) shows the interconnection
between the three output ports of PM and the 3 {t1,t2,t3} signals in a different order which is

shifted one position down relative to the connections in the given circuit, Figure 8(a). When the

upward positional shift is considered, it will yield an additional alternative connection (fault). The
goal of this test is to provide a stimulus which delivers 3 different results at the monitored

boundary of the circuit, indicating that two alternative faults were detected and allowing the

designer to determine which configuration was intended. Each test vector applied to local Type-E

sites must consider the values on all three signals (or ports) involved in Type-E errors so that the
fault effect is identified as a shifted value pair relative to the given circuit connections.

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

7

Figure 8. Type E fault – port connected with a positional shift.

In Figure 8(b), having 010 (or 101) appear on {P,Q,R} triplet results in a sensitized fault such

that {t1,t2,t3} triplet would receive either 001 (or 110) due to the fault depicted in the figure.

These particular shifted connections would generate a differential value pair of 010/001 (or

101/110) on the {t1,t2,t3} triplet. This type-E fault thus creates two signals with differential (fault
effect) values. If the shifted connections of Figure 8(b) were in the other direction ({P,Q,R}

going to {t3,t1,t2}, respectively), differential value pair on {t1,t2,t3} triplet would be 010/100 (

or 101/011). Both of these will be considered since it is not apparent which connection – the
given form in (a), shifted as shown in (b), or shifted opposite way (not shown)- is the right

connection.

For a type-E fault to be detected both fault effects must be marked as detected at the top-level

circuit boundary. If only one such fault effect is detected, then it may be only type-D in which

just two signals got swapped. For type-E, two differential pairs tagged with the type-E fault

location and the differential signal values must be detected at the top circuit or at the monitored
boundary - not necessarily in the time cycle, if simulated sequentially.

3. SOFTWARE IMPLEMENTATION

A software application named Module Integration Error App (MIEApp) was developed in C++

programming language to automate the module interconnect fault detection process for

hierarchical single-bit circuits of any size. The step (i) shown in Figure 9 reads the circuit

description in a simplified Verilog hardware description language format and compiles to build a
computer in-memory database with the module hierarchy intact so that module boundaries are

directly available for computations. Step (ii) inspects the module boundaries and their port

interconnections to enumerate Type-B, Type-D and Type-E faults which are the most possible
alternative connections. The tool directly identifies Type-A and Type-C faults during the circuit

compilation step. It is noted that Type-E is created by potentially misplaced signal connections

which are based on how the hierarchical database was created and therefore it may be slightly

different from shifted signal sequences shown on the circuit portions in Figure 8. In step (iii),
MIEAppselects a new undetected fault from the enumerated list. It then determines the test value

pairs appropriate for the fault type at the local interconnect site to sensitize the fault as explained

earlier. The value pairs must be such that the selected alternate connection and the connection in
the given circuit will have opposite values. Step (v) is to create a test vector starting from the

inputs to make the value pairs appear at the selected fault site.

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

8

Figure 9. The software process flowchart

In step (vi), the differential value pairs of the selected fault are propagated toward circuit outputs.
Steps (v) and (vi) create a single unified test vector starting from the top-level input boundary by

adopting the typical automatic test generation techniques [9]. Once a complete test vector has

been developed it is simulated, without considering faults, on the compiled circuit model kept in
the data memory of MIEApp. Additionally, in step (vii), each test vector generated by the tool is

applied and simulated concurrently to all the undetected faults that were enumerated during the

compilation stage. When a fault is detected, it is marked and removed from further consideration
as is typically the case in test generation techniques. The fault simulation in MIEApp uses

concurrent and differential faulty simulation algorithms [10] embedded into an event driven

simulation engine. Time delays on the logic gate elements are taken as unit delays.

MIEapp tool is robust enough to apply on large circuits as evident from the results obtained. The

logic simulation accuracy of the tool was validated on numerous circuits using the downloaded

and locally built version of Icarus Verilog software [11]. The MIEApp tool does not analyze the
data flow paths in a circuit. Therefore, it enumerates many Type-D and Type-E faulty alternatives

for circuits using signals and ports used for interconnections among module instances. While the

accuracy of the logic simulation of MIEApp was validated by manually comparing signal values
against simulated values in Icarus simulator [11], no other software was available publicly to

compare the fault simulation accuracy or performance against other similar software tools.

Therefore, the accuracy of fault simulations in MIEApp was verified manually on several small

circuits for Type-C, D and E faults both through software debugging traces and on paper.

4. TEST CIRCUITS AND RESULTS

The software tool, MIEApp was developed under the Microsoft Visual Studio C++ 2019 version
16.11. MIEApp was applied on several circuits which are briefly described below. Many small

circuits were used to verify the logic simulation accuracy followed by the fault detection

accuracy for B, D and E fault types. Some of the ISCAS 85 benchmark circuit descriptions

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

9

(publicly available) accompanied a vector set [7] developed for stuck at fault testing. These
circuits were simulated with the test vectors on both MIEApp and iVerilog [11]. The logic values

appearing at the outer boundary of the circuits matched between the two simulators for every

ISCAS circuit reassuring the accuracy of MIEApp.

MIEApp uses any external stimuli vector provided and retained only those that were productive

in detecting any faults. If faults are still left undetected, the tool generates test stimuli vectors and

screens each by simulating against the remining faults before accepting the vector as useful. The
tool ran on a Windows 10 desktop with 8 GB RAM and 2.2 GHz AMD A6 processor supported

by 512 GB SSD drive. Only the ISACS 6288 circuit was evaluated under a different Windows 10

desktop with 3.6GHz i5 processor combined with 8 GB RAM and an optical drive due to its
larger size.The Verilog grammar-based text descriptions for each of the ISCAS-85 circuits used

are relatively long and not included in this paper. Further information for each of the circuits can

be found in public domain [7, 8]. Again, it is important to note that each of the hierarchical

Verilog descriptions were converted into a single bit-oriented representation for MIEApp.

4.1. Circuit ME

This circuit shown in Figure 10 was primarily used as a test case to verify the accuracy of

MIEappin every aspect of this project due to its small size. After the unit testing of the software,

this circuit validated the MIEApp steps in compiling and building the hierarchical data base,
accuracy of the event driven unit delay logic simulation, correctness of the differential and

concurrent fault simulation with tracking of differential data pairs for Type-D and Type-E faults,

and the vector generation step followed with the internal simulation.

Figure 10. The verification circuit, ME

MIEApp detected 6 out of 8 Type-D faults it enumerated in the circuit shown in Figure 10

generating 3 test vectors. It was able to detect all the 6 Type-E faults it enumerated using the
same 3 vectors. Due to the symmetry of input signals to modules M1 and M2, swapped

alternatives of {A,B} and {C,D} are not distinguishable. The 3 test vectors were 1100, 1010 and

0101 for {A,B,C,D} inputs. Each fault is tagged with a numerical identification number for
internal reference by the software. Type-E faults require a triplet of ports on the module

boundary, and only {A,B,C,D} in ME of Figure 10 can result in alternate Type -E faults.

Table 1 provides the alternate connections enumerated and maintained by MIEApp as differential
circuit segment for each of those Type-E faults. In the given circuit, {A,B,C,D} external signals

feed {e,f,g,h} ports of ME in Figure 10. The second row of Table 1 shows the Type-E faults

which are the possible alternate connections of external {A,B,C,D} inputs going into ME circuit.

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

10

The last row shows which test vector on {A,B,C,D} distinguishes the alternatives (faults) from
the connections given in the circuit. Table 2 provides a summary of the output results showing

the enumerated list of the faults and their detection status per effective test vector.

Table 1. Enumerated Type-E faults of ME circuit.

Fault ID 9 10 11 12 13 14

Alternative

connections

{A,B,C,D}

= f,g,e,h}

{A,B,C,D}

={e,g,h,f}

{A,B,C,D}

={g,f,h,e}

{A,B,C,D}

={e,h,f,g}

{A,B,C,D}

={g,e,f,h}

{A,B,C,D}

={h,e,g,f}

Vector 1010 1100 0101 1100 1100 0101

Table 2. Summary of detection status of Type D and Type E faults of ME circuit.

Vector on

{A,B,C,D} Fault description from MIEApp on its output report
Detected

at port

1100

ID= 6: Type D: /.B drives M2.n2 instead of /.D AND /.D drives

M1.a2 instead of /.B

P2

ID= 4: Type D: /.A drives M2.n2 instead of /.D AND /.D drives

M1.a1 instead of /.A

ID= 5: Type D: /.B drives M2.n1 instead of /.C AND /.C drives

M1.a2 instead of /.B

ID= 3: Type D: /.A drives M2.n1 instead of /.C AND /.C drives
M1.a1 instead of /.A

ID= 8: Type D: /.w1 drives M3.b instead of /.w2 AND /.w2 drives

M3.a instead of /.w1

ID= 12: Type E: /.D drives fanouts of /.C, which drives /.B fanouts

ID= 10: Type E: /.B drives fanouts of /.C, which drives /.D fanouts

ID= 13: Type E: /.C drives fanouts of /.B, which drives /.A fanouts

P1 ID= 1: Type D: M3.y drives /.P2 instead of M3.R AND M3.R

drives /.P1 instead of M3.y

1010
ID=9: Type E: /.A drives fanouts of /.B, which drives /.C fanouts

P2

0101

ID= 11: Type E: /.C drives fanouts of /.D, which drives /.A fanouts
P2

ID= 14: Type E: /.B drives fanouts of /.A, which drives /.D fanouts

Not detectable

ID= 7: Type D: /.C drives M2.n2 instead of /.D AND /.D drives

M2.n1 instead of /.C

ID= 2: Type D: /.A drives M1.a2 instead of /.B AND /.B drives

M1.a1 instead of /.A

4.2. Circuit MIR

This circuit in Figure 3 contains basic logic modules that were used to help visualize and develop
the five different module interconnection fault types seen in figures 4-8. This MIR circuit was

used extensively for the development of methods to categorize various interconnection errors to

facilitate their detection by software automation.

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

11

MIEApp created 3 Type-B faults considering that the unconnected signal in PM module may
drive one of the three output ports yielding 3 alternate connections. They were all detected by the

software tool. The single undetected Type-D fault was due to the swapping of {Q,R} signals

which cannot be detected since the same signal feeds both of them. Out of the 28 Type-E faults,

only 18 were detected which implies that MIEApp created test vectors to distinguish 18 different
connections between modules alternative (faults) to the connections in the given circuit. Ten of

the Type-E alternate connections cannot be detected or distinguished due to certain fan out

configurations such as t2 and t3 signals having the same value, Y1 and Y2 have shared signals,
and the insy instance of AM has a fixed input value.

4.3. ISCAS 74283 Circuit

This combinational adder circuit presented with ISCAS benchmarks [7] consists of 3 different

modules as shown in Figure 11. The GP module generates parity signals of A and B inputs
allowing CLA module to generate carry out signals from the addition operation. The final SUM

module provides the results of the addition of A and B combined with the single carry in, C0.

Figure 11. ISCAS 74283 Four-Bit Adder circuit

4.4. ISCAS 74L85 Circuit

The 4-bit magnitude comparator [7] had 3 control inputs and 4-bit data inputs for comparison. It
produces 3 output signals based on the control input values. It is functionally modelled as shown

in Figure 12 with 4 separate modules for this research work. The CLA module is a carry look

ahead adder and this circuit contains two of its instances. The GP module generates signals for
CLA modules based on the two control signals checking for inequality. The EQ module is the

simplest with a single gate. The circuit yields a total of 467 Type-D and Type-E alternative

interconnections (faults) among modules, inputs, and output signals.

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

12

Figure 12. ISCAS 74L85 - Four-Bit Magnitude Comparator Circuit

4.5. ISCAS C432 Circuit

The C432 circuit shown in block diagram from in Figure 13 is an interrupt controller for 3

multichannel bus groups. Each interrupt request bus (labeled A, B, and C) contains 9 individual
channels, where the bit position within each bus determines the interrupt request priority. The

input bus of 9 bits labeled E enables and disables interrupt requests within the respective bit

positions. The request in A has higher priority over B, which has priority over any request from
the B group. Within each bus, the position of each channel relative to the others gives higher or

lower priority to the request. The circuit in Figure 13 consists of unique individual modules

labeled M1, M2, M3, M4, and M5, which contain the underlying logic gates. The seven outputs
PA, PB, PC and the four bits in Chan output signal specify, as a binary coded decimal value,

which channels have acknowledged the interrupt requests from A, B, or C. The logic in module

M5 also provides a 9 to 5 priority encoder. All the outputs, except Chan, are single bit signals

while all the inputs and all the other internal signals are 9 bits wide. This circuit yielded over
5000 possible alternate interconnections among the five modules, inputs, and output signals.

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

13

Figure 13. ISCAS C432 - 27- Channel Interrupt Control Circuit

4.6. ISCAS C6288 Circuit

This circuit is a 16 x16 bit multiplier which is consisting of 225 full adders and 15 half adder

modules arranged in a matrix. The C6288 circuit has two 16-bit signals as inputs and a 16-bit
output bus. To obtain module interconnections, the circuit modules were arranged as a 15x16

matrix providing a two-level hierarchy. The circuit is Figure 14 is a reduced representation of the

large original circuit showing only a 4x4 multiplier. In that, modules labelled F are full adders
and those with H are half adder modules. With a shallow hierarchy and many module instances,

MIEApp enumerated over 250,000 potential alternative interconnections of Type-D and Type-E.

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

14

Figure 14. Reduced model of ISCAS C6288 circuit

Table 3. Summary of results from MIEApp on the benchmark and other circuits.

Circuit Runtime

(minutes)

MI count

detected/total (%)

Vectors

created

Type-B

count

detected/

total

Type-D count

detected/ total

Type-E

count

detected/

total

ME 0.0437 12 / 14 (86%) 3 0/0 6/8 6/6

MIR 0.0290 37/ 48 (77%) 8 3 / 3 16 / 17 18/28

74283 0.1265 406 / 406 (100%) 20 0/0 238 / 238 168 / 168

74L85 0.1247 467 / 467 (100%) 35 0/0 299 / 299 168 / 168

C432 312 5220/5334 (98%) 56 0/0 4680 / 4680 540 / 654

C6288 3582
250755/251146

(99%)
334 0/0 247696/247696 3059/3450

5. CONCLUSION

To reduce the effort needed to verify the accuracy of the module integration step of digital

circuit design, we developed five fault models representing the common module

interconnection errors in the initial stage of this work. We formulated logic value pairs needed
to make alternate connections or faults to show signal value differentials at the locality where

faults were enumerated. With typical test generation techniques enhanced to target differential

value pairs, we were able to generate tests and simulate them in a concurrent event driven
simulation that we implemented in C++ as an integrated software tool, MIEApp. After a

reasonable level of debug and error checking we applied the software to several circuits

including ISCAS benchmark circuits to obtain results that were presented here. The main

limitation was that the circuits were constrained only to combinational circuits. The generated
test vectors distinguished (detected) in a range of 77% to 100% of all potential alternative module

interconnections in the tested circuits listed in Table 3. We were able to apply the software onto

a large circuit like C6288 to show the robustness of the algorithms and the implemented
MIEApp software tool.

International Journal of VLSI design & Communication Systems (VLSICS) Vol 15, No1/2/3, June 2024

15

REFERENCES

[1] S. Kang and S. Szygenda, (1992) “Automatic Error Pattern Generation for Design Error Detection in

a Design Validation Simulation System”, Proceedings of 5th Annual IEEE International ASIC

Conference, pp. 533-536.

[2] S. Kang and S. Szygenda, (1992) “New Design Error Modelling and Metrics for design Validation”,

proceedings of Euro-DAC ‘ 92, pp. 472-473.

[3] Shi-Yu Huang, et. al, (1998) “Fault-simulation based design error diagnosis for sequential circuits”,

Proceedings of 35th Design Automation Conference, pp. 632-637.
[4] Kai-hui Chang, (2007) “Functional Design Error Diagnosis, Correction and Layout Repair of Digital

Circuits”, University of Michigan, PhD Dissertation.

[5] S. Almukhaizim, et. al, (2003) "On compaction-based concurrent error detection," 9th IEEE On-Line

Testing Symposium, IOLTS 2003., Kos, Greece, pp. 157-162.

[6] S. Kavitha, et. al, (2019) “A New Approach of an Error Detecting and Correcting Circuit by

Arithmetic Logic Blocks”, International Journal of Electronics and Telecommunications, VOL. 65,

pg. 313-318.

[7] https://web.eecs.umich.edu/~jhayes/iscas.restore/benchmark.html

[8] https://pld.ttu.ee/~maksim/benchmarks/

[9] P. Goel and B. C. Rosales, (1981) "PODEM-X an Automatic Test Generation System for VLSI

Logic Structures", Proceedings of 18th Design Automation Conf., pp. 260-268.

[10] S. Gai and P. L. Montessoro, (1991) "Creator: General and Efficient Multilevel Concurrent Fault
Simulation", Proceedings of 28th Design Automation Conference, pp. 160-163.

[11] https://sourceforge.net/projects/iverilog/

AUTHORS

Nicholas Dematteis, Jesus Godinez, and Gina Rhoads are senior level undergraduate students pursuing

bachelor’s degree in computer engineering at the engineering and computer science division of Pitt-

Johnstown campus of the University of Pittsburgh, Pennsylvania, USA. All three graduated in April 2024.

MADDU KARUNARATNE earned his Ph.D. degree in electrical engineering from the University of

Arizona, Tucson, AZ. Before joining Pitt-Johnstown in 2004, he gained fourteen years of industry

experience working in the semiconductor industry performing software development, application

engineering, design, testing and verification of digital integrated circuits. His research interests are in

design and test automation, power analysis, and software development. He has authored numerous

publications and holds several US patents.

	Abstract
	Design Error, Module Interconnections, Test Generation, Fault Model, Fault Simulation

