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ABSTRACT 
 
Large circuits are developed by integration of many smaller modules that have already been designed and 

verified for accurate functionality. The integration phase also requires verification that the signal 

connections between the integrated modules are correctly paired to produce the expected final design. The 

validation of the module connectivity may be performed either visually or via simulations as part of the 

verification step of the overall functionality which may not check every connection between modules 

.Inadvertently some module interconnections may be in error, and neither be discovered visually nor 

detected if stimulus does not cover the whole circuit. This research attempts to automate the validation of 

module interconnections in a select area or the entire circuit by creating stimulus for circuit simulations. 

First step in this work is to identify the types of errors that are likely to occur when individual modules are 

integrated to create the final circuit. The second step is to develop a software program to create test 

stimulus targeting the module interconnections so they can be simulated to produce circuit output values. If 
those values deviate from what is functionally expected, then module connection errors are present 

provided each module has been verified before the integration.  

 
The research first classified the most probable alternative connections between modules into five 

categories based on the structure of the given hierarchical circuit. Secondly, algorithms were developed to 

enumerate possible alternatives to the interconnections between the modules in the circuit. These 

alternatives were considered as faults to be detected at the circuit boundary. Thirdly, tests were generated 

to detect such faults which yields external input data vectors to distinguish each potential alternative from 

the given circuit connections. Detection of a fault imply that the vector applied may be used for simulation 
of an equivalent behaviour or functional model of the circuit to obtain expected boundary values which 

would reveal whether the alternative is the correct connection or not. The test vectors were simulated 

against all the enumerated alternative connections (classified as faults) of the entire circuit to ensure each 

vector is productive in detecting a fault. The developed software was tested on a series of small circuits 

and appropriate benchmark circuits with great success. The generated test vectors distinguished (detected) 

77% to 100% of all potential alternative interconnections between the modules in the circuits. 
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1. INTRODUCTION 
 

Verification is time consuming although it is an integral part of digital circuit design, in which a 
designer develops data stimuli (vectors) to apply to the circuit boundary in order to see how it 

produces results at the output terminals. This circuit boundary may be either external at the 

highest hierarchy level or at a lower module boundary. The stimulus is applied to the circuit via 

logical simulations and the designer compares the produced results against the expected values. 
The comparison may be integrated as part of the simulation environment. This process is repeated 

until the designer is satisfied that the circuit meets the high-level requirements of the system. 

While the simulation models of the circuit can automate the comparison process, it does not 
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eliminate the effort in developing the test vectors to apply. To compound this issue, when 
multiple circuit modules are integrated together at multiple hierarchy levels, the interconnection 

and feedback paths may introduce some manual editing errors into the design which may escape 

detection if the test stimuli are not thorough enough.  

 
Published research articles are available in very broad categories and most of those focus on 

finding and correcting errors in manufactured circuits. Some authors have put forth research into 

design errors in specific categories of circuits under various circumstances. Kang and Szygenda 
[1, 2] described many different design errors but did not cover hierarchical modules, boundary 

mismatches and resulting sequential loops, or tri state gates where three value logic is 

needed.Huang [3] analyzed stuck at faults in sequential circuits in an attempt to diagnose design 
errors in such circuits. Chang [4] did similar research but constrained the analysis to the circuit 

layout level only. Other research [5] used mathematical models to determine what went wrong in 

the designor to implement error correction schemes built into the circuit itself rather than 

detection via simulation.  
 

In this research we developed a method and accompanying software that would detect common 

module interconnection mistakes for generic hierarchical circuit designs using external stimuli, 
with the goal of reducing the effort required for verification of the integrated circuit. We assume 

that each individual low-level module is accurate by design but their interconnections in making 

larger modules in a hierarchical design may introduce occasional port connection errors. 
Therefore, some or a few module connections in a given circuit design may not be correct and an 

alternate connection might have been the right design intention. This research work developed 

algorithms to identify and enumerate possible alternative connections, and software was 

developed to produce effective test stimuli to show different outcomes in the simulation values 
that depend on each distinct alternate connection. The test stimulus is comprehensive for the 

designer to reliably determine if connections among modules in the design are correct as intended 

or not.  
 

In keeping up with test generation terminology, we use the word fault to refer to a possible 

alternative connection between two ports among interconnected modules in the given circuit. 

However, one or more connections of the given hierarchical circuit may be wrong, and one or 
more alternate connections, which are referred to as faults, might have been the design intention. 

The essential idea of fault detection in this work is to develop test stimuli that differentiates each 

single interconnection between two modules from its each alternative connection. Then the 
designer can determine whether the given circuit or an alternative is the right connection. 

 

We identified five different fault types as the first phase. We also developed signal values needed 
to make the faults sensitive locally between module connections. In the second phase, software 

was written to create those signal values and propagate differential value pairs through the circuit 

to detect faults at the external boundary. The value pairs might be on a single signal line as in 

stuck at fault testing or on two different lines. We applied the software to benchmark circuits to 
obtain results on its effectiveness. 

 

Section 2 of this paper describes the identification of alternate interconnections referred to as 
fault models in this work. It also explains signal value pairs required to sensitize alternatives 

(faults) with respect to the given gate level circuit. In Section 3 we briefly describe the 

implementation of the research work by software automation to compile, enumerate potential 
faults, create tests, and to simulate faults concurrently. Section 4 describes the nature of the 

circuits used for the experiment and includes summary of the data. Finally, the conclusion is 

given in Section 5. 
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2. INTERCONNECTION FAULT MODELS 
 
As mentioned earlier, an alternative connection between two module instances may be the correct 

or the intended connection by the designer rather than the connection in the given circuit. We 

classify those alternate connections as faults. If an alternate connection between two ports is the 

intention, then their connection in the given circuit is in error. The most probable module 
interconnect errors can be classified into five different types, A through E. Together these 

classifications can account for nearly all module connection errors in hierarchical circuit designs. 

Additionally, having distinct classification allows them to be analyzed individually in order to 
determine the best way to distinguish the alternatives, i.e. detect the faults. Modules at a lower 

hierarchical level are typically created by design automation tools and higher-level modules are 

assembled by designers. Even the lower-level modules may include other modules in addition to 

logic elements as shown in Figure 1.  
 

Modules in Figure 2 are hierarchical modules, themselves containing instances of modules shown 

in Figure 1. The figures depict module names and their instance names which appear after the 
colon (:) such as k0 appearing in HA:k0 in Figure 2(b) which is a half adder module in its 

functionality. The circuit model shown in Figure 3 illustrates the highest level (top level) of a 

circuit that will be used as an example to help depict the five different fault types described in 
this work. We used the modules shown in Figure 1 and Figure 2 with additional logic elements to 

build the larger circuit named MIR in Figure 3. The EHA module used the HA module once as 

shown in Figure 2(b), and the MIR circuit also used an instance of HA module which is named 

insha in Figure 3. MIR circuit has ports A0, B0, A1, and B1 acting as external inputs while Y0, 
Y1, Y2, and Y3 signals act as external output ports. Multiple signal sets are represented as a 

vector for clarity such as {A0,B0,A1,B1} to represent the A0, B0, A1, and B1 signal set.  

 

.  

 
Figure 1. Example modules built with logic elements. 

 
During the simulations a designer typically monitors the ports at higher levels of a circuit which 

may or may not be at the top level. In order to detect a potential error, the effect of that error, in 

the form of a pair of data values (desired value and actual value) must be made to appear at the 
erroneous locations. Here the actual value refers to the simulated value of the given circuit which 

may be incorrect if an alternative module connection is the correct one. Those value pairs then 

must be propagated via simulation to the circuit boundary being monitored to collect simulation 

data. In this work, we need to see values on alternate connections that are different from values 
on the connections of the given circuit. By originating that discrepancy on the possible 

misconnect site and propagating it further toward the circuit boundary, we can detect the fault.  
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Figure 2. Example modules built with predesigned modules and logic elements. 

 

2.1. Type-A Fault Model  
 

A module integration fault of Type-A occurs when either an input port or output port of a module 
instance integrated as a component in building another module does not have a connection to a 

wire or a port that provides a driving signal. Figure 4 illustrates this as a separate instance of AM 

module used in Figure 3. If the circuit is described in a text-based hardware language (VHDL, 
Verilog, etc.) and processed using design automation tools, the initial compiling stage will detect 

any faults of this type and therefore no further exploration is needed for this type of potential 

errors. 

 

 
 

Figure 3. Top level circuit (MIR) built with other modules and logic elements. 
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Figure 4. Type A fault – Unconnected ports. Port T and Q are not connected.  

 

2.2. Type-B Fault Model  
 
This error may occur when two or more output ports or internal signals are driven by a single port 

of a module instance. An example occurs in the output of PM module in Figure 2 at Q and R 

ports. It may occur in conjunction with Type-A faults depending on the module makeup of the 
circuit. Figure 5 shows the alternative connections where (b) and (c) yield two distinct circuits.  

In order to evaluate the potential error (fault) of port c of module m inside PM not driving t3 

signal via the signal R. To detect that fault, a test stimulus producing opposing values, 01 (or 10) 
on the {t2,t3} pair is needed. This requires port c and signal w to receive 01 (or 10) respectively, 

to sensitize the potential faults. The differential effect of 01 vs 10 (or 10 vs 01) on {t2,t3} signal 

pair must be propagated through the circuit using external test vectors as typical in test patten 

generation. This validation may be extended by having alternative connections to any output port 
from the unconnected signal which produces three alternative (faulty) circuits for this example. 

 

 
 

Figure 5. Type B fault – a single signal drives multiple ports with a signal left unconnected.  

 

2.3. Type-C Fault Model 
 

A fixed logic value, either 1 or 0, at an input port of a module instance is considered a potential 
integration error and categorized as a Type-C fault. This configuration is illustrated in Figure 6 

with the AM module that is also in the MIR circuit shown in Figure 3. Detecting whether this is 

intent, or mistake requires originating the opposite value at the fault location and propagating it 

through. Similar to Type-A faults, Type-C faults will generally be flagged by software 
automation tool developed in the initial compilation stages.  

 

 
 

Figure 6. Type C fault – flipped logic constant.  

 

2.4. Type-D Fault Model  
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A module integration fault of Type-D occurs when adjacent ports of a module are swapped with 

respect to the intended connections. Figure 7(a) depicts the interconnections of the insha instance 

of the HA module in the circuit of Figure 3. In the given circuit, the signal pair {t4,B1} is 

connected to {a,b} pair, and {c,s} pair is connected to {t6,t7} pair. Figure 7(b) contains two 
potential Type-D faults, one occurring at the input ports of swapped {B1,t4} to {a,b} pair, and 

the other at the output ports of swapped {c,s} to {t7, t6} signal pair. 

 
Detecting a Type-D fault requires placing opposing pairs of values, 01 (or 10), at the 

corresponding swapped ports on {t6,t7} pair which is similar to Type-B fault detections. These 

ports may be input or output ports of a module or at the topmost boundary. The swapped pair of 
connections (the fault) is created virtually within the simulator to carry out the simulation of the 

given circuit and the alternative as two different circuits. This is a typical concurrent simulation 

of differential circuits without creating two completely alternative circuits and simulating the 

entire circuit for each enumerated fault.  
 

 
 

Figure 7. Type D fault – swapped port pairs on a module boundary. 

 

2.5. Type-E Fault Model  
 
When a set of signals outside of a module is being connected to the ports of that module, the 

designer may inadvertently create a wrong connection. While it is possible the erroneous 

connection may be random, we consider it to be a shifted connection for simplicity. This situation 
is classified as a Type-E fault. A Type-E fault occurring on only two ports may be reduced into a 

Type-D fault. Figure 8(a) shows three single line interconnections going from {P,Q,R} output 

ports of PM module to two other modules via the signals marked {t1,t2,t3}, respectively, which 

feed input ports of two other modules, EHA and AM. Figure 8(b) shows the interconnection 
between the three output ports of PM and the 3 {t1,t2,t3} signals in a different order which is 

shifted one position down relative to the connections in the given circuit, Figure 8(a). When the 

upward positional shift is considered, it will yield an additional alternative connection (fault). The 
goal of this test is to provide a stimulus which delivers 3 different results at the monitored 

boundary of the circuit, indicating that two alternative faults were detected and allowing the 

designer to determine which configuration was intended. Each test vector applied to local Type-E 

sites must consider the values on all three signals (or ports) involved in Type-E errors so that the 
fault effect is identified as a shifted value pair relative to the given circuit connections.  
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Figure 8. Type E fault – port connected with a positional shift. 

 
In Figure 8(b), having 010 (or 101) appear on {P,Q,R} triplet results in a sensitized fault such 

that {t1,t2,t3} triplet would receive either 001 (or 110) due to the fault depicted in the figure. 

These particular shifted connections would generate a differential value pair of 010/001 (or 

101/110) on the {t1,t2,t3} triplet. This type-E fault thus creates two signals with differential (fault 
effect) values. If the shifted connections of Figure 8(b) were in the other direction ({P,Q,R} 

going to {t3,t1,t2}, respectively), differential value pair on {t1,t2,t3} triplet would be 010/100 ( 

or 101/011). Both of these will be considered since it is not apparent which connection – the 
given form in (a), shifted as shown in (b), or shifted opposite way (not shown)- is the right 

connection. 

 
For a type-E fault to be detected both fault effects must be marked as detected at the top-level 

circuit boundary. If only one such fault effect is detected, then it may be only type-D in which 

just two signals got swapped. For type-E, two differential pairs tagged with the type-E fault 

location and the differential signal values must be detected at the top circuit or at the monitored 
boundary - not necessarily in the time cycle, if simulated sequentially. 

 

3. SOFTWARE IMPLEMENTATION  
 
A software application named Module Integration Error App (MIEApp) was developed in C++ 

programming language to automate the module interconnect fault detection process for 

hierarchical single-bit circuits of any size.  The step (i) shown in Figure 9 reads the circuit 

description in a simplified Verilog hardware description language format and compiles to build a 
computer in-memory database with the module hierarchy intact so that module boundaries are 

directly available for computations. Step (ii) inspects the module boundaries and their port 

interconnections to enumerate Type-B, Type-D and Type-E faults which are the most possible 
alternative connections. The tool directly identifies Type-A and Type-C faults during the circuit 

compilation step. It is noted that Type-E is created by potentially misplaced signal connections 

which are based on how the hierarchical database was created and therefore it may be slightly 

different from shifted signal sequences shown on the circuit portions in Figure 8. In step (iii), 
MIEAppselects a new undetected fault from the enumerated list. It then determines the test value 

pairs appropriate for the fault type at the local interconnect site to sensitize the fault as explained 

earlier. The value pairs must be such that the selected alternate connection and the connection in 
the given circuit will have opposite values. Step (v) is to create a test vector starting from the 

inputs to make the value pairs appear at the selected fault site.  
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Figure 9. The software process flowchart 

 

In step (vi), the differential value pairs of the selected fault are propagated toward circuit outputs. 
Steps (v) and (vi) create a single unified test vector starting from the top-level input boundary by 

adopting the typical automatic test generation techniques [9]. Once a complete test vector has 

been developed it is simulated, without considering faults, on the compiled circuit model kept in 
the data memory of MIEApp. Additionally, in step (vii), each test vector generated by the tool is 

applied and simulated concurrently to all the undetected faults that were enumerated during the 

compilation stage. When a fault is detected, it is marked and removed from further consideration 
as is typically the case in test generation techniques. The fault simulation in MIEApp uses 

concurrent and differential faulty simulation algorithms [10] embedded into an event driven 

simulation engine. Time delays on the logic gate elements are taken as unit delays.  

 
MIEapp tool is robust enough to apply on large circuits as evident from the results obtained. The 

logic simulation accuracy of the tool was validated on numerous circuits using the downloaded 

and locally built version of Icarus Verilog software [11]. The MIEApp tool does not analyze the 
data flow paths in a circuit. Therefore, it enumerates many Type-D and Type-E faulty alternatives 

for circuits using signals and ports used for interconnections among module instances. While the 

accuracy of the logic simulation of MIEApp was validated by manually comparing signal values 
against simulated values in Icarus simulator [11], no other software was available publicly to 

compare the fault simulation accuracy or performance against other similar software tools. 

Therefore, the accuracy of fault simulations in MIEApp was verified manually on several small 

circuits for Type-C, D and E faults both through software debugging traces and on paper. 
 

 

 
 

 

4. TEST CIRCUITS AND RESULTS 
 

The software tool, MIEApp was developed under the Microsoft Visual Studio C++ 2019 version 
16.11. MIEApp was applied on several circuits which are briefly described below. Many small 

circuits were used to verify the logic simulation accuracy followed by the fault detection 

accuracy for B, D and E fault types. Some of the ISCAS 85 benchmark circuit descriptions 
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(publicly available) accompanied a vector set [7] developed for stuck at fault testing. These 
circuits were simulated with the test vectors on both MIEApp and iVerilog [11]. The logic values 

appearing at the outer boundary of the circuits matched between the two simulators for every 

ISCAS circuit reassuring the accuracy of MIEApp. 

 
MIEApp uses any external stimuli vector provided and retained only those that were productive 

in detecting any faults. If faults are still left undetected, the tool generates test stimuli vectors and 

screens each by simulating against the remining faults before accepting the vector as useful. The 
tool ran on a Windows 10 desktop with 8 GB RAM and 2.2 GHz AMD A6 processor supported 

by 512 GB SSD drive. Only the ISACS 6288 circuit was evaluated under a different Windows 10 

desktop with 3.6GHz i5 processor combined with 8 GB RAM and an optical drive due to its 
larger size.The Verilog grammar-based text descriptions for each of the ISCAS-85 circuits used 

are relatively long and not included in this paper. Further information for each of the circuits can 

be found in public domain [7, 8]. Again, it is important to note that each of the hierarchical 

Verilog descriptions were converted into a single bit-oriented representation for MIEApp. 
 

4.1. Circuit ME 
 

This circuit shown in Figure 10 was primarily used as a test case to verify the accuracy of 

MIEappin every aspect of this project due to its small size. After the unit testing of the software, 

this circuit validated the MIEApp steps in compiling and building the hierarchical data base, 
accuracy of the event driven unit delay logic simulation, correctness of the differential and 

concurrent fault simulation with tracking of differential data pairs for Type-D and Type-E faults, 

and the vector generation step followed with the internal simulation. 

 
 

Figure 10. The verification circuit, ME 

 

MIEApp detected 6 out of 8 Type-D faults it enumerated in the circuit shown in Figure 10 

generating 3 test vectors. It was able to detect all the 6 Type-E faults it enumerated using the 
same 3 vectors. Due to the symmetry of input signals to modules M1 and M2, swapped 

alternatives of {A,B} and {C,D} are not distinguishable. The 3 test vectors were 1100, 1010 and 

0101 for {A,B,C,D} inputs. Each fault is tagged with a numerical identification number for 
internal reference by the software. Type-E faults require a triplet of ports on the module 

boundary, and only {A,B,C,D} in ME of Figure 10 can result in alternate Type -E faults.  

 

Table 1 provides the alternate connections enumerated and maintained by MIEApp as differential 
circuit segment for each of those Type-E faults. In the given circuit, {A,B,C,D} external signals 

feed {e,f,g,h} ports of ME in Figure 10. The second row of Table 1 shows the Type-E faults 

which are the possible alternate connections of external {A,B,C,D} inputs going into ME circuit. 
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The last row shows which test vector on {A,B,C,D} distinguishes the alternatives (faults) from 
the connections given in the circuit. Table 2 provides a summary of the output results showing 

the enumerated list of the faults and their detection status per effective test vector.  

 
Table 1. Enumerated Type-E faults of ME circuit.  

 
Fault ID 9 10 11 12 13 14 

Alternative 

connections 

{A,B,C,D} 

= f,g,e,h} 

{A,B,C,D} 

={e,g,h,f} 

{A,B,C,D} 

={g,f,h,e} 

{A,B,C,D} 

={e,h,f,g} 

{A,B,C,D} 

={g,e,f,h} 

{A,B,C,D} 

={h,e,g,f} 

Vector  1010 1100 0101 1100 1100 0101 

 
Table 2. Summary of detection status of Type D and Type E faults of ME circuit.  

 
Vector on 

{A,B,C,D}  Fault description from MIEApp on its output report 
Detected 

at port 

1100 

ID= 6: Type D: /.B drives M2.n2 instead of /.D AND /.D drives 

M1.a2 instead of /.B 

P2 

ID= 4: Type D: /.A drives M2.n2 instead of /.D AND /.D drives 

M1.a1 instead of /.A 

ID= 5: Type D: /.B drives M2.n1 instead of /.C AND /.C drives 

M1.a2 instead of /.B 

ID= 3: Type D: /.A drives M2.n1 instead of /.C AND /.C drives 
M1.a1 instead of /.A 

ID= 8: Type D: /.w1 drives M3.b instead of /.w2 AND /.w2 drives 

M3.a instead of /.w1 

ID= 12: Type E: /.D drives fanouts of /.C, which drives /.B fanouts 

ID= 10: Type E: /.B drives fanouts of /.C, which drives /.D fanouts 

ID= 13: Type E: /.C drives fanouts of /.B, which drives /.A fanouts 

P1 ID= 1: Type D: M3.y drives /.P2 instead of M3.R AND M3.R 

drives /.P1 instead of M3.y 

1010 
ID=9: Type E: /.A drives fanouts of /.B, which drives /.C fanouts 

P2 

0101 

ID= 11: Type E: /.C drives fanouts of /.D, which drives /.A fanouts 
P2 

 
ID= 14: Type E: /.B drives fanouts of /.A, which drives /.D fanouts 

Not detectable 

ID= 7: Type D: /.C drives M2.n2 instead of /.D AND /.D drives 

M2.n1 instead of /.C 

 

ID= 2: Type D: /.A drives M1.a2 instead of /.B AND /.B drives 

M1.a1 instead of /.A 

 

 

 

 

4.2. Circuit MIR 

 

This circuit in Figure 3 contains basic logic modules that were used to help visualize and develop 
the five different module interconnection fault types seen in figures 4-8. This MIR circuit was 

used extensively for the development of methods to categorize various interconnection errors to 

facilitate their detection by software automation.  
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MIEApp created 3 Type-B faults considering that the unconnected signal in PM module may 
drive one of the three output ports yielding 3 alternate connections. They were all detected by the 

software tool. The single undetected Type-D fault was due to the swapping of {Q,R} signals 

which cannot be detected since the same signal feeds both of them. Out of the 28 Type-E faults, 

only 18 were detected which implies that MIEApp created test vectors to distinguish 18 different 
connections between modules alternative (faults) to the connections in the given circuit. Ten of 

the Type-E alternate connections cannot be detected or distinguished due to certain fan out 

configurations such as t2 and t3 signals having the same value, Y1 and Y2 have shared signals, 
and the insy instance of AM has a fixed input value. 

 

4.3. ISCAS 74283 Circuit 
 

This combinational adder circuit presented with ISCAS benchmarks [7] consists of 3 different 

modules as shown in Figure 11. The GP module generates parity signals of A and B inputs 
allowing CLA module to generate carry out signals from the addition operation. The final SUM 

module provides the results of the addition of A and B combined with the single carry in, C0. 

 
 

Figure 11. ISCAS 74283 Four-Bit Adder circuit 

 

4.4. ISCAS 74L85 Circuit 
 

The 4-bit magnitude comparator [7] had 3 control inputs and 4-bit data inputs for comparison. It 
produces 3 output signals based on the control input values. It is functionally modelled as shown 

in Figure 12 with 4 separate modules for this research work. The CLA module is a carry look 

ahead adder and this circuit contains two of its instances. The GP module generates signals for 
CLA modules based on the two control signals checking for inequality. The EQ module is the 

simplest with a single gate. The circuit yields a total of 467 Type-D and Type-E alternative 

interconnections (faults) among modules, inputs, and output signals. 
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Figure 12. ISCAS 74L85 - Four-Bit Magnitude Comparator Circuit 

 

4.5. ISCAS C432 Circuit 
 

The C432 circuit shown in block diagram from in Figure 13 is an interrupt controller for 3 

multichannel bus groups. Each interrupt request bus (labeled A, B, and C) contains 9 individual 
channels, where the bit position within each bus determines the interrupt request priority. The 

input bus of 9 bits labeled E enables and disables interrupt requests within the respective bit 

positions. The request in A has higher priority over B, which has priority over any request from 
the B group. Within each bus, the position of each channel relative to the others gives higher or 

lower priority to the request. The circuit in Figure 13 consists of unique individual modules 

labeled M1, M2, M3, M4, and M5, which contain the underlying logic gates. The seven outputs 
PA, PB, PC and the four bits in Chan output signal specify, as a binary coded decimal value, 

which channels have acknowledged the interrupt requests from A, B, or C. The logic in module 

M5 also provides a 9 to 5 priority encoder. All the outputs, except Chan, are single bit signals 

while all the inputs and all the other internal signals are 9 bits wide. This circuit yielded over 
5000 possible alternate interconnections among the five modules, inputs, and output signals. 
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Figure 13. ISCAS C432 - 27- Channel Interrupt Control Circuit 

 

4.6. ISCAS C6288 Circuit 
 

This circuit is a 16 x16 bit multiplier which is consisting of 225 full adders and 15 half adder 

modules arranged in a matrix. The C6288 circuit has two 16-bit signals as inputs and a 16-bit 
output bus. To obtain module interconnections, the circuit modules were arranged as a 15x16 

matrix providing a two-level hierarchy. The circuit is Figure 14 is a reduced representation of the 

large original circuit showing only a 4x4 multiplier. In that, modules labelled F are full adders 
and those with H are half adder modules. With a shallow hierarchy and many module instances, 

MIEApp enumerated over 250,000 potential alternative interconnections of Type-D and Type-E.  
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Figure 14. Reduced model of ISCAS C6288 circuit 

 
Table 3. Summary of results from MIEApp on the benchmark and other circuits.  

 
Circuit Runtime 

(minutes) 

 

MI count 

detected/total (%) 

Vectors 

created  

Type-B 

count 

detected/ 

total 

Type-D count 

detected/ total 

Type-E 

count 

detected/ 

total 

ME 0.0437 12 / 14 (86%) 3 0/0 6/8 6/6 

MIR 0.0290 37/ 48 (77%) 8 3 / 3 16 / 17 18/28 

74283 0.1265 406 / 406 (100%) 20 0/0 238 / 238 168 / 168 

74L85 0.1247 467 / 467 (100%) 35 0/0 299 / 299 168 / 168 

C432 312 5220/5334 (98%) 56 0/0 4680 / 4680 540 / 654 

C6288 3582 
250755/251146 

(99%) 
334 0/0 247696/247696 3059/3450 

 

5. CONCLUSION 
 
To reduce the effort needed to verify the accuracy of the module integration step of digital 

circuit design, we developed five fault models representing the common module 

interconnection errors in the initial stage of this work. We formulated logic value pairs needed 
to make alternate connections or faults to show signal value differentials at the locality where 

faults were enumerated. With typical test generation techniques enhanced to target differential 

value pairs, we were able to generate tests and simulate them in a concurrent event driven 
simulation that we implemented in C++ as an integrated software tool, MIEApp. After a 

reasonable level of debug and error checking we applied the software to several circuits 

including ISCAS benchmark circuits to obtain results that were presented here. The main 

limitation was that the circuits were constrained only to combinational circuits. The generated 
test vectors distinguished (detected) in a range of 77% to 100% of all potential alternative module 

interconnections in the tested circuits listed in Table 3. We were able to apply the software onto 

a large circuit like C6288 to show the robustness of the algorithms and the implemented 
MIEApp software tool. 
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