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ABSTRACT 

In this paper we propose an approach for testing time-domain properties of analog and mixed-signal 

circuits. The approach is based on an adaptation of a recently developed test generation technique for 

hybrid systems and a new concept of coverage for such systems. The approach is illustrated by its 

application to some benchmark circuits. 
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1. INTRODUCTION 

The increasing need for analog and mixed-signal circuits has motivated the development in 

design and test tools for these circuits[27]. Analog and mixed signal testing is considered to be a 

very difficult task. Even when the area of the analog part in a mixed-signal circuit is small, the 

cost of its testing covers a significant proportion of the global manufacturing cost. 

In comparison with the digital counterpart, the specific difficulties of analog and mixed-signal 

testing are the following. While digital testing can use simple fault models (such as stuck-at-

faults), fault models in analog designs are often complex and reflect the process-related 

disturbances, such as parameter deviations or size changes which have an infinite domain of 

possible values. In addition, the performance measures (such as transfert curves, frequency 

characteristics) are more complex than patterns of 1’s and 0’s at the outputs in a digital circuit. 

In this work, we focus on the problem of automatic test generation, which involves computing a 

set of input patterns that permit detecting a given fault (for example, by comparing the differences 

in the outputs with some predetermined tolerance thresholds). Test generation has been 

considered for analog circuits such as in [13], [25], [20], for mixed-signal circuits such as in [2], 

[15], [14], [29],[30], using a variety of techniques, such as static test generation [23],[28], 

sensitivity computation [13], Monte-Carlo simulation [25], [26], and optimization [5]. 

Following the model-based design approach, we propose a new test generation method for analog 

and mixed-signal circuits using hybrid system models. Hybrid systems are systems that combine 
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discrete event systems and continuous systems and can naturally describe the behaviors of these 

circuits. Formal verification of these circuits using these models has been investigated in [7], [10]. 

Our test generation method is built upon on an adaptation of a recently developed test generation 

technique for hybrid systems, guided by a coverage measure [18]. The rest of the paper is 

organized as follows. First, we briefly introduce the model and important testing notions, such as 

conformance relation, test cases, test verdicts, coverage. We then formally state our testing 

problem and present our test generation algorithm. Finally, we demonstrate the application of the 

approach to three benchmark circuits. 

 

2. TESTING PROBLEM 

As a model for hybrid systems, we use hybrid automata [1]. In most classic versions of hybrid 

automata, continuous dynamics are defined using ordinary differential equations (ODEs). The 

behaviors of analog and mixed-signal circuits are however described using differential algebraic 

equations (DAEs). We thus adapt the model to capture this particularity. Mathematically, the 

behaviour of a (non-linear) analog circuit can be described by a set of DAEs:  

 

 

Where x(t) ∊ �n
 denotes the state variables (internal voltages, currents, and outputs),  

denotes their time derivatives, w ∊ W ⊆ �m
 is the circuit parameter vector, and  

u: �+⟶U  ⊆ �p
 is the input signal. When considering mixed-signal circuits that exhibit both 

logical and continuous, their behavior can be naturally modeled using hybrid automata. Before 

presenting the model, we remark that DAEs and ODEs are different in both theoretical and 

numerical properties. We shall briefly discuss the DAE solving method we use in Section IV. 

 

2.1. Hybrid Automata 

A hybrid automaton is an automaton augmented with continuous variables. 

Definition 1 (Hybrid automaton). A hybrid automaton is a tuple A= (X, Q, F, A, I, G,R) where 

• X ⊂ �n
 is the continuous state space. We denote by V (A) the set of continuous variables 

of A. 

• Q is a finite set of locations (or discrete states). 

• E is a set of discrete transitions. 

• F = {Fq | q ∈ Q } such that for each q ∈ Q, Fq = (fq,Uq,Wq) defines a DAE  

  
where w ∊ Wq ⊆ �m 

is the parameter vector, and u: �+⟶Uq ⊆ �p 
is the input signal. 

We assume the existence and uniqueness of solutions of these differential algebraic 

equations. Note that during the evolution of the system, the parameter w is constant. 

• I={ Iq ⊆ �n
 | q ∊  Q } is a set of staying conditions. 

• G ={ Ge | e ∊  E }  is a set of guards such that for each discrete transition e ∈ , Ge⊆ Iq 

• R={ Re | e ∈ E} is a set of reset maps. For each e=(q,q’) ∈ E, Re : Gq ⟶2 Iq’
 defines 

how x may change when A switches from q to q’. 
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A hybrid state is a pair (q, x) where q ∈ X and the hybrid state space is S=Q × X state (q, x) can 

change in two ways: by continuous evolution and by discrete evolution. In location q the 

continuous evolution of x is governed by the DAE  

 

Let ϕ(t, x, u(·), p) be the solution of the DAE with the initial condition x, the parameter p 

and under the input u(·). A continuous transition:  where h > 0 is a 

positive real number means that x’= ϕ(h, x, u(·), p) and for all t ∈[0,h[ 

ϕ(t, x, u(·), p) ∈ Iq . In other words, x’ is reached from x under the input u(·), and we say 

that u(·) is admissible starting at (q, x) for h time. For a state (q, x), if there exists a 

transition e = (q, q’) ∈ E and x ∈ Ge, then the transition e is enabled, the system can 

switch from location q to q’ and the continuous variables can be assigned to a new value 

x’ ∈  Re (x). This denoted by:   and we say that the discrete transition e is 

admissible at (q, x). We use the notation (q,x) ⟶(q’, x’) to simply indicate that (q’, x’) is 

reachable from (q, x). We assume that discrete transitions are instantaneous. The hybrid automata 

we consider are assumed to be non-Zeno. 

 
For simplicity of presentation, we first assume a single initial state of the automaton 

denoted by (qinit, xinit), and additionally all the paremeter set Pq are singletons. An 

extension of the framework to a set of initial states and sets of parameters will be 

discussed when we present our test generation algorithm. 

Note that this model is non-deterministic. Indeed, in continuous dynamics the non-

determinism is represented by the set of admissible input functions. The discrete 

transitions are non-deterministic because there might be continuous states at which the 

system can either continue with the same continuous dynamics or make a transition. Also, 

multiple transitions can be enabled at the same continuous states, and additionally, the 

reset maps could also be set-valued. This non-determinism is useful for describing 

disturbances from the environment and imprecision in modeling and implementation. To 

define our testing framework, we need the notions of inputs and observations. 

Inputs 

An input of the system which is controllable (by the tester) is called control input; otherwise, it is 

called disturbance input. We consider the following inputs: 

• Continuous inputs. All the continuous inputs of the system are controllable. Since we 

want to implement the tester as a computer program, we are interested in piecewise-

constant continuous input functions. Hence, a continuous control action, such as (ūq, h) 

where ūq is the value of the input and h is the time step, specifies that the system 

continues with the dynamics Fq under the input u(t) = ūq ¯  for exactly h time. We say that 

(ūq, h) is admissible at (q, x) if  u(t) = ūq is admissible starting at (q, x) for h time. 

• Discrete inputs. The discrete transitions are partitioned in controllable and 

uncontrollable discrete transitions. Those are controllable correspond to discrete control 

inputs, and the others to discrete disturbance inputs. The tester emits a discrete control 

action to specify whether the system should take a controllable transition (among the 

enabled ones) or continue with the same continuous dynamics. In the latter case, it can 

also control the values assigned to the continuous variables by the associated reset map. 
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We denote a discrete control action of this type by the corresponding transition, such as 

(q, q’). 

In the remainder of the paper, for simplicity of explanation, we use the following 

assumption: a continuous control action is of higher priority than any discrete input 

actions. This means that after a continuous control action (ūq, h) is applied, no discrete 

transition can occur during h time, i.e. until the end of that continuous control action. 

This assumption is not restrictive, from a modeling point of view. As we shall see later, 

by considering all the possible values of h we can capture the cases where a discrete 

transition can occur before the termination of a continuous control action. 

Definition 2 (Admissible Input Sequence). For a state (q, x), a sequence of input actions  

i0, i1 . . .  ik is admissible starting at (q, x) if the following conditions are satisfied: 

• The first input action  i0 is admissible at (q, x). 

• For each i = 1, 2, 3, . . . , k: 

- ii is admissible at (qi, xi) where (qi, xi) is the state such that . 

Intuitively, this means that an admissible control sequence does not cause the automaton A to be 

blocked. 

Definition 3 (Trace). Given an admissible input sequence γ= i0, i1 . . .  ik, the trace starting at 

(q, x) under γ is defined as follows: 

 

We use the notation   to indicate that (q’, x’) is reachable from (q, x) after γ. 

 

Admissible Control Sequences 

It follows from the above assumption that uncontrollable discrete transitions cannot occur during 

a continuous control action. However, they can occur between control actions. Hence, the result 

of applying a control action is nondeterministic. Given a state (q, x) and a control action c, let σ = 

σ0, σ1 , … σk be an input sequence that satisfies the following: 

 

• σ0=c and all the other σi with i > 0 are disturbance input actions. 

• σ  is an admissible input sequence starting at (q, x). 

 

Let  ∑ (c, (q, x)) be the set of all sequences like σ. We can now define the set of traces reachable from 

 (q, x) after a control action c as: 

 
 
We also define the set of successors of (q, x) after a control action c as  

Reach((q, x), c) = {(q’, x’) | ᴲ σ ∈  ∑ (c, (q, x))  }. 
 

   We can now proceed to define an admissible control action sequence (or admissible control 

sequence for short). Given a sequence of two control actions γ= c0, c1, we define 
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where is the concatenation operator. Note that if c0 is admissible at (q, x) then  

Reach((q, x), c0) is not empty; therefore, we say that  γ = c0, c1 is admissible starting at (q, x)  

if  ∑ (γ, (q, x))  is not empty. 

 

For a sequence γ of more than two control actions, ∑ (γ, (q, x)) can be defined similarly. We 

denote by SC(A) the set of all admissible control action sequences. We can also define the set of 

traces starting at (q, x) after an admissible control sequence γ as follows: 
 

 
 

Observations 

In this work, we focus on behavior of analog signals and thus the properties of interest involve 

only continuous variables. We assume a set Vo(A) ⊆ V (A) of continuous variables of the hybrid 

automaton that are observable by the tester. We also assume that any change in location can be 

observed by the tester. Given a hybrid state s = (q, x), cont(s) gives the continuous component of 

s. The definition can be extended to a sequence of states τ = (q0, x0), . . . , (qk, xk) as follows: 

cont(τ ) = x0, . . . , xk. The projection of a continuous state x on Vo(A), denoted by  π (x, Vo(A)), 

is called an observation. 

 

Definition 4 (Observation Sequence). Let γ= c0, c1, . . . , ck be an admissible control sequence. 

Let (qinit, xinit) be the initial state of A. The set of observation sequences associated with γ  is 

 

 
 

2.2. Specification and System under Test 

We assume that the specification is modeled as a hybrid automaton A and the system under test 

(such as an implementation) by another hybrid automaton As such that: 

• Vo(A) ⊆ Vo(As) and 

• SC(A) ⊆ SC(As). 

Note that we do not assume that we know the model As. For a given observation sequence O of 

A, the operator of projecting O on a set V of variables is defined componentwise, denoted by 

π (O, V ). Again, we can naturally extend this definition to a set of observation sequences  

π (S, V ) = {π (O, V ) | O ∈ S}.  

2.3. Testing Problem 

The goal of testing is to make statements about the relation between the traces of a system under 

test and a specification. The system under test As often operates within some environment. In our 

testing problem, the tester plays the role of the environment and it performs experiments on As in 

order to study the relation between A and As. The tester works as follows. It emits an admissible 

control sequence to the system under test and measures the resulting observation sequence in 

order to produce a verdict v ∈ {P, F, I}. The verdict P means ‘pass’ (the observation sequence is 

allowed by the specification), F means ‘fail’ (the observation sequence is not allowed by the 

specification), and I means ‘inconclusive’ (neither a ‘pass’ nor a ‘fail’ verdict can be assigned). 

The observations are measured at the end of each continuous control action and after each 

discrete (disturbance or control) action. Conformance is an important property of the relation 

between the system under test and the specification. 
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Figure 1.  Test architecture. 

Definition 5 (Conformance). We say that the system under test As is conform to the specification 

A, denoted by A ≈ Ap, iff  for all γ  SC(A) : π(SO(As, γ), Vo(A)) ⊆ SO(A, γ). 

Note that since SC(A)  ⊆ SC(As), a control sequence which is admissible for A is also admissible 

for As. 

2.4. Test case 

A test case is represented by a (finite) tree where each node is associated with an observation and 

each path from the root with an observation sequence. Each edge of the tree is associated with a 

control action. 

The observation sequences of the trees are grouped into three disjoint sets: the set Op of 

observation sequences that cause a ‘pass´ verdict, the set Of that cause a ‘fail´ verdict, and the set 

Oi that cause an ‘inconclusive´ verdict. Note that an observation sequence must cause a unique 

verdict. 

Since a hybrid automaton might have an infinite number of infinite traces of a hybrid automaton; 

however, the tester can only perform a finite number of test cases in finite time. Therefore, we 

need to select a finite portion of the input space of A and test the conformance of As with respect 

to this portion. The selection is done using a coverage criterion that we formally define in the next 

section. Hence, our testing problem is formulated as to automatically generate a set of test cases 

from the specification model to satisfy this coverage criterion. 

2.5. Test Coverage 

Test coverage is a way to evaluate testing quality. More precisely, it is a way to relate the number 

of tests to carry out with the fraction of the system’s behaviors effectively explored. As 

mentioned earlier, the classic coverage notions mainly used in software testing, such as statement 

coverage and if-thenelse branch coverage, path coverage (see for example [24], [22]), are not 

appropriate for the trajectories of continuous and hybrid systems defined by differential 

equations. However, the geometry of the hybrid state space can be exploited to define a coverage 

measure which, on one hand, has a close relationship with the properties to verify and, on the 

other hand, can be efficiently computed or estimated. 

 In circuit testing, fault coverage is an important concern. A fault is said to be detected by a test 

input pattern if, when applying the input pattern to the circuit, different output patterns can be 

observed, for the reference (non-faulty) circuit and the faulty circuit. Generally, faults can be 

categorized into catastrophic and parametric faults. Examples of catastrophic faults include a 

change in the circuit topology, a global deviation of the circuit behavior. Parametric faults refer to 

small changes in the parameters that do not affect the circuit functionality. For example, a band-

pass filter which has a frequency response with the correct shape but it passes a larger range of 

frequencies. It is often assumed that beyond a deviation of 10% is considered to have caused 

faults.  
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For this reason, we are motivated in defining a coverage measure that describes how ‘well’ the 

visited states represent the set of all reachable states of the system. This measure is defined using 

the star discrepancy notion in statistics, which characterises the uniformity of the distribution of a 

point set within a region. We first briefly recall the star discrepancy. The star discrepancy is an 

important notion in equidistribution theory as well as in quasi-Monte Carlo techniques (see for 

example [4]). 

 

Star Discrepancy: Let P be a set of k points inside 

B= [l1, L1]×… ×[ln, Ln]. Let � be the set of all subboxes J of the form:   

 
 

with "i ∈ [ li, Li] (see Figure 2 for an illustration). The local discrepancy of the point set P with 

respect to the subbox J is defined as follows : 

 

  
 

where A(P, J) is the number of points of P that are inside J, and  λ(J) is the volume of the 

box J. The star discrepancy of P with respect to the box B is defined as:  

 

 
 

Note that 0 < D*(P, B) ≤ 1. Intuitively, the star discrepancy is a measure for the �irregularity of a set of points. A large value D (P, B) means that the points in P are not 

much equidistributed over B. When the region is a hyper-cube, the star discrepancy 

measures how badly the point set estimates the volume of the cube. Since a hybrid system 

can only evolve within the staying sets of the locations, we are interested in the coverage 

with respect to these sets. For simplicity we assume that all the staying sets are boxes. 

 

 

Figure 2.  Illustration of the star discrepancy notion. 

 
Definition 6 (Test Coverage). Let P = {(q, Pq) | q ∈ Q ⋀ Pq ⊂ Iq} be the set of states. The 

coverage of P is defined as: 
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Where ||Q|| is the number of locations in Q. 

If a staying set Iq is not a box, we can take the smallest oriented box that encloses it, and apply the 

star discrepancy definition in (2) to that box after an appropriate coordination change. We can see 

that a large value of Cov(P) indicates a good space-covering quality. If P is the set of states 

visited by a test suit, our objective is to maximize Cov(P). 

3. TEST GENERATION 

Our test generation is a combination of the Rapidly exploring Random Tree (RRT) algorithm (a 

successful robot motion planning technique [17], [32]) and a guiding tool used to achieve a good 

coverage of the system’s behaviors we want to test. We call the resulting algorithm gRRT. In this 

section, we present only the main ideas of gRRT, and a detailed description of the algorithm can 

be found in [18]. 

The algorithm constructs a tree denoted by T, the root of which corresponds to the initial state 

s0 = (q0, x0). The construction of the tree is summarized in Algorithm 1. In each iteration, a hybrid 

state sgoal = (qgoal, xgoal) is sampled to indicate the direction towards which the tree is expected to 

evolve. Expanding the tree towards sgoal is done by making a continuous step as follows: 

• First, a starting state snear = (qnear, xnear) for the current iteration is determined. It is natural 

to choose snear to be a state near sgoal. The distance between two hybrid states is defined as 

an average length of the traces from snear to sgoal (see [18] for more detail). 

• Next, the procedure CONTINUOUSSTEP tries to find the input ūqnear to take the system 

from snear towards sgoal as closely as possible after one time step h. This results in a new 

continuous state xnew. A new edge from snear to snew = (qnear, xnew), labeled with the 

associated continuous control action is then added to the tree. To find snew, when the set U 

is not finite it can be sampled, or one can solve a local optimal control problem. 

Then, from snew, we compute its successors by all possible discrete transitions. Each time we add 

a new edge, we label it with the associated control or disturbance action. The algorithm 

terminates after reaching a satisfactory coverage value or after some maximal number of 

iterations. To extract a test case from the tree, we project the states at the nodes on the observable 

variables of A. In Algorithm 1, the function SAMPLING plays the role of guiding the 

exploration, which will be described later. To deal with a set of initial states, we can sample a 

finite number of initial states and thus the tree can have more than one root. Similarly, to deal 

with parameter sets, we can consider a finite number of parameter values associated and associate 

them with each initial state. Along a path from each root, the parameter vector remains constant 

and is used to determine the corresponding continuous dynamics. 
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Coverage Estimation 

To evaluate the coverage of a set of states, we estimate a lower and upper bound of the star 

discrepancy of a point set (exact computation is not an easy problem). These bounds as well as 

the information obtained from their estimation are used to decide which parts of the state space 

have been ‘well explored’ and which parts need to be explored more. Let us briefly describe this 

estimation method. Let B=[l1, L1]×… ×[ln, Ln]. We define a box partition of B as a set of boxes  

 

Π={b
1
,…,b

m
} such that : 

 
and the interiors of the boxes b

i
 do not intersect. Each such box is called an elementary 

box . Given a box b = [α1, β1]×… ×[ α n, βn] ∈ Π, we define b
+
 = [l1, β1]×… ×[ l n, βn] and 

 b
-
 = [l1, α 1]×… ×[ l n, α n] (see Figure 2 for an illustration). 

 

For any finite box partition Π of B, the star discrepancy D*(P,B) of the point set P with respect to 

B satisfies: C(P, Π) ≤  D*(P,B) ≤ B(P, Π) where the upper and lower bounds are:  

 

and 

 
 

Coverage-Guided Sampling 
 

In each iteration, we want to bias the goal state sampling distribution according to the current 

coverage of the visited states. More concretely, we first sample a discrete location and then a 

continuous state. Let P = {(q, Pq) | q ∈ Q ⋀ Pq ⊂ Iq} be the current set of vi  sited states. The 

discrete location sampling distribution depends on the current continuous state coverage of each 

location:  

 

We now show how to sample xgoal, assuming that we have already sampled a discrete location 

qgoal = q. The sampling process consists of two steps. In the first step, we sample an elementary 

box bgoal from the set Π; in the second step we sample a point xgoal in bgoal uniformly. The 

elementary box sampling distribution in the first step is biased in order to optimize the coverage. 

The intuition behind this guiding strategy is to favor the selection of an elementary box such that 

a new point x added in this box results in a reduction of the lower and upper bounds. In words, 

the essential idea of this guiding method is that we use the information about the current coverage 

in order to improve it (see [18]). An important remark is that when the propery of interest 

involves only a subset of continuous variables, we can define a coverage measure with respect to 

the projection of the state space on these variables, and use it to guide the sampling process. 

Before continuing, we recall that the gRRT algorithm preserves the probabilistic completeness of 

the RRT algorithm.The proof can be found in [18]. Roughly speaking, the probabilistic 

completeness property states that if the trace we seach for is feasible, then the probability that the 

algorithm finds it approaches 1 as the number k of iterations approaches infinity. This property is 

a way to explain a good spacecovering property of the RRT algorithm and its successes in solving 

practical motion planning problems [17]. Our test generation algorithm has been tested on a 

number of control applications, which proved its scalability to high dimensional systems [18]. 
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4. APPLICATION TO BENCHMARK CIRCUITS 

We have implemented a test generation tool using the above described algorithm. For circuit 

applications, we use the well-known RADAU algorithm for solving DAEs [12]. Before 

presenting the experimental results obtained for three benchmark circuits, we recall that solving 

high index1 and stiff DAEs is computationally expensive, and in order to evaluate the efficiency 

of the test generation algorithm, we have chosen two practical circuits with DAEs of this type. 

The three circuits we treated are: a transistor amplifier, a voltage controlled oscillator, and a 

Delta-Sigma modulator circuit. 

 

4.1. Transistor Amplifier 

The first example is a transistor amplifier model, taken from [12]. Its diagram is shown in Figure 

3, where the variable yi is the voltage at node i; Ue is the input signal and y8 = U8(node 8) is the 

output voltage. The circuit equations are a system of DAEs of index 1 with 8 continuous 

variables. The matrix M is given by: 

 

 

Figure 3.  Transistor amplifier circuit [12]. 
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The function f is given by: 

 

The circuit parameters are: Ub = 6; UF = 0.026; R0 = 1000; Rk = 9000, k = 1, . . . , 9;  

Ck = k10
−6

;  α = 0.99;  "= 10
−6

.The initial state yinit = (0,Ub/(R2/R1 + 1), 

Ub/(R2/R1 + 1),Ub,Ub/(R6/R5+1),Ub/(R6/R5+1),Ub, 0) 

 

 

1The differential index of a DAE is a measure of the singularity of the DAE. It characterizes the difficulty in numerically solving the 

equation. 

 

We are interested in studying the influence of circuit parameter uncertainty on the transient 

properties, such as overshoot, stabilisation time. The uncertainty we consider is indeed a 

perturbation in the function describing the relation between the current through the source of the 

two transistors and the voltages at the gate and source  

 

With  

 

The input signal Ue(t) = 0.1sin(200 / t). We used the gRRT algorithm to generate a test case, 

which indicates the presence of traces with overshoots (the acceptable interval of U8 in the non-

perturbed circuit is [−3.01, 1.42]). Figure 4 shows the generated observation sequences projected 

on the variable U8 over time.  

 

Figure 4.  Test generation result for the transitor amplifier (first figure: zoom in the first 0.03s). 
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4.2. Voltage Controlled Oscillator 

The second circuit we examined is a voltage controlled oscillator (VCO) circuit [11], shown in 

Figure 5. The behavior of this circuit can be represented by a system of DAEs with 55 continuous 

variables. We are interested the oscillating frequency of the variables vC1 and vC2 . Indeed, this 

frequency is a linear function of the input voltage. We study the influence of a time-variant 

perturbation in C2 on the frequency. This perturbation is modeled as an input signal. In this 

example we show that, in addition to conformance relation, using this framework, we can test a 

property of the input/output relation. More precisely, for a given input sequence, we want 

compare the observation sequences of the specification A and those of the system under test As, 

with respect to a property.  

 

 
Figure 5.  Voltage controlled oscillator (VCO) circuit. 

 

As an example, the oscillating period T ± 0 of a variable x1 = vC2 can be expressed using a simple 

automaton with one clock y in Figure 6 (similar to a monitor automaton in [10]). The question is 

to know if given an oscillating trace in A, its corresponding trace in As is also oscillates with the 

same period. This additional automaton can be used to determine test verdicts for the traces in the 

computed test cases. If we are additionally interested in a property which states that all traces of 

the system under test oscillate with the period T ± 0. If an observation sequence corresponds to a 

path entering the ‘Error´ location, then it causes a ‘fail´ verdict. 

 

Since we cannot use finite traces to prove a safety property, the set of observation sequences that 

cause a ‘pass´ verdict is empty, and therefore the remaining observation sequences (that do not 

cause a ‘fail´ verdict) causes a ‘inconclusive´ verdict. We consider a constant input voltage uin = 

1.7. The generated test case shows that after the transient time, under a time variant deviation of 

C2 which ranges within ±10% of the value of C2 = 0.1e−4, the variables vC1 and vC2 oscillate with 

the period T ∈ [1.25, 1.258]s (with ɛ = 2.8e − 4). This result is consistent with the result presented 

in [11]. The number of generated states was 30000 and the computation time  as 14mn. In this 

experiment, the coverage measure was defined on the projection of the state space on vC1 and vC2 . 

Figure 7 shows the explored traces of vC2 over time. 
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Figure 6.  Automaton for an oscillation specification. 

 

Figure 7.  Variable vC2 over time 

 

4.3. Delta-Sigma Circuit 

The third example is a Delta-Sigma modulator [19], which is a mixed-signal circuit. The Delta-

Sigma modulation is a very popular technique to perform analog to digital conversion. Its 

principle can be briefly explained as follows. When the input sinusoid is positive and its value is 

less than 1, the output takes the +1 value more often and the quantization error which is the 

difference between the input and the output of the quantizer is fed back with negative gain and 

‘accumulated’ in the integrator   .  

 

Then, when the accumulated error reaches a certain threshold, the quantizer switches the value of 

the output to −1 for some time, which reduces the mean of the quantization error. A third-order 

Delta-Sigma modulator is modeled as a hybrid automaton, shown in Figure 9. It is called third 

order since it uses a third order filter to process noise. Higher-order modulators achieve better 

performance but induce stability problems. A modulator is said to be stable if under a bounded 

input, the states of its integrators are bounded. Stability analysis for such circuits is still a 

challenging problem [19], due to the presence of two sources of  non-linearities: saturation and 

quantization. The discrete time dynamics of the system is as follows: 
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Where matrix A, vectors a and b are constants depending on the various gains of the model,  

x(k) ∈ �3
 represents the integrator states, u(k) ∈ � R is the input, y(k) ∈  � is the input of the 

quantizer. Thus, its output is v(k) = sign(y(k)), and one can see that whenever v remains constant, 

the system dynamics is affine continuous. 

 

Figure 8.  Model of a third-order modulator: Saturation blocks model saturation of the integrators. 

 

 

Figure 9.  Third-order Delta-Sigma modulator. 

 

The test generation algorithm was performed for the initial state x(0) inside the set  

[−0.01, 0.01]3
 and the input values u(k) ∈ [−0.5, 0.5]. After exploring only 57 states, saturation 

was already detected. The computation time was less than 1s. Figure 10 shows the values of (sup 

x1(k))k as a function of the number k of time steps. We can see that the sequence  

(sup x1(k))k leaves the safe interval [−x1
sat

 , x1
sat

 ] =[−0.2, 0.2], which indicates the instability of 

the circuit. This instability for a fixed finite horizon was also detected in [7] using an 

optimization-based verification method. 
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Figure 10. Test generation result for the Delta-Sigma circuit. 

 

5. RELATED WORK 

Related work in analog and mixed-signal circuit testing was already discussed in the introduction. 

Here, we only discuss related work in hybrid systems testing. Classical model-based testing 

frameworks using finite labeled transition systems has been applied to digital circuits, 

communication protocols and software. They have recently been extended to hybrid systems. The 

paper [21] proposed a framework for generating test cases from simulation of hybrid models 

specified using the language CHARON. A probabilistic test generation approach, similar to ours, 

was presented in [9]. This paper also proposed a coverage measure based on a discretized version 

of dispersion.While in our work, the coverage measure is used to guide the simulation, in [9] it is 

used as a termination criterion. The RRT algorithms have also been used to solve other problems 

such as hybrid systems control and verification [8], [6]. 

6. CONCLUSIONS 

To conclude, in this paper we described a test generation technique for analog and mixed signal 

circuits using a hybrid system framework. The application of the proposed technique was 

demonstrated with a number of benchmark circuits. A number of directions for future research 

can be identified.First, we are interested in enriching our framework to capture partial 

observability and measurement imprecisions. In order to facilitate the application to practical 

circuits, we need a tool for automatic generation of hybrid automata from commonlyused circuit 

descriptions, such as Spice netlists. On the other hand, as mentioned earlier, an efficient and 

reliable simulation method is a key ingredient in our approach. The state of the art SPICE 

simulator is prone to convergence problems when the dynamics of the circuit has fast variations 

caused by components with stiff characteristics. In collaboration with researchers at INRIA 

Rhône-Alpes, a topic of our undergoing research is to integrate in our test generation tool a 

simulation algorithm based on the non-smooth approach [3]. 
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