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ABSTRACT 

This paper presents the architecture and VHDL design of a Two Dimensional Discrete Cosine Transform 

(2D-DCT) with Quantization and zigzag arrangement. This architecture is used as the core and path in 

JPEG image compression hardware.   The 2D- DCT calculation is made using the 2D- DCT Separability 

property, such that the whole architecture is divided into two 1D-DCT calculations by using a transpose 

buffer. Architecture for Quantization and zigzag process is also described in this paper. The quantization 

process is done using division operation. This design aimed to be implemented in Spartan-3E XC3S500 

FPGA. The 2D- DCT architecture uses 1891 Slices, 51I/O pins, and 8 multipliers of one Xilinx Spartan-3E 

XC3S500E FPGA reaches an operating frequency of 101.35 MHz One input block with 8 x 8 elements of 8 

bits each is processed in  6604 ns and pipeline latency is 140 clock cycles . 
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1. INTRODUCTION 

One of the most popular lossy compression methods is JPEG. JPEG stands for Joint Photographic 

Expert Group. According to Magli [3], widely used in JPEG image included on the internet web 

pages. The picture using JPEG can be accessed faster than the image without compression. 

The JPEG compression can be divided into five main steps [6], as shown in Fig.1 color space 

conversion, down-sampling, 2-D DCT, quantization and entropy coding. The first two operations 

are used only for color images. For gray scale image we use only last three steps. In this present 

paper we concentrated on hardware architecture of 2D-DCT, quantization and zigzag 

arrangement. To achieve high throughput, this paper uses pipelined architecture, rather than 

single clock architecture designed by Basri et.al [4]. 
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Fig.1 JPEG Compression Steps for Colour Images 

1.1. Color Space Converter 

The process of the JPEG starts with color space conversion. This process is not applicable to 

gray-scale image, where there is only one luminance component for gray scale image. Color 

image data in computers is usually represented in RGB (Red-Green-Blue) format. Each color 

component uses 8 bits to store, thus, a full color pixel would require 24 bits. From the fact that 

human eyes are more sensitive to intensity change rather than color change, the JPEG algorithm 

exploits this by converting the RGB format to another color space called YCbCr. Y is luminance 

component, Cb and Cr are chrominance components. After converting the color space, the 

encoder stores the luminance Y in more detail than the other two chrominance components. 

The Y component represents the brightness of a pixel, the Cb and Cr components represent the 

chrominance (split into blue and red components). This is the same color space as used by digital 

color television as well as digital video including video DVDs, and is similar to the way color is 

represented in analog PAL video and MAC but not by analog NTSC, which uses the YIQ color 

space. The YCbCr color space conversion allows greater compression without a significant effect 

on perceptual image quality (or greater perceptual image quality for the same compression). The 

compression is more efficient as the brightness information, which is more important to the 

eventual perceptual quality of the image, is confined to a single channel, more closely 

representing the human visual system. 

The RGB image is converted to YCbCr by using the following equations 

 Y= 0.299R+ 0.587G +0.114B 

 Cb=0.564B– 0.564 Y 

 Cr=0.713R– 0.713 Y 

1.2. Down Sampling 

Due to the densities of color- and brightness sensitive receptors in the human eye, humans can see 

considerably more fine detail in the brightness of an image (the Y component) than in the color of 

an image (the Cb and Cr components). Using this knowledge, encoders can be designed to 

compress images more efficiently. The transformation into the YCbCr color model enables the 

next step, which is to reduce the spatial resolution of the Cb and Cr components (called "down 

sampling" or "chroma sub sampling"). The ratios at which the down sampling can be done on 

JPEG are 4:4:4 (no down sampling), 4:2:2 (reduce by factor of 2 in horizontal direction), and 

most commonly 4:2:0(reduce by factor of 2 in horizontal and vertical directions). For the rest of 

the compression process, Y, Cb and Cr are processed separately and in a very similar manner. 

Down sampling the chroma components saves 33% or 50% of the space taken by the image 

without drastically affecting perceptual image quality. 
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1.3. Block Splitting 

After sub sampling, each channel must be split into 8×8 blocks (of pixels). If the data for a 

channel does not represent an integer number of blocks then the encoder must fill the remaining 

area of the incomplete blocks with some form of dummy data: Filling the edge pixels with a fixed 

color (typically black) creates dark artifacts along the visible part of the border.      Repeating the 

edge pixels is a common but nonoptimal technique that avoids the visible border, but it still 

creates artifacts with the colorimetric of the filled cells. A better strategy is to fill pixels using 

colors that preserve the DCT coefficients of the visible pixels, at least for the low frequency ones 

(for example filling with the average color of the visible part will preserve the first DC 

coefficient, but best fitting the next two AC coefficients will produce much better results with less 

visible 8×8 cell edges along the border). 

1.4. Discrete Cosine Transform (DCT) 

The discrete cosine transforms (DCT) is a technique for converting a signal into elementary 

frequency components. It is widely used in image compression. Before compression, image data 

in memory is divided into several blocks MCU (minimum code units). Each block consists of 8x8 

pixels. Compression operations including DCT-2D in it will be done on each block [3].             

Two dimensional DCT, because of its advantage in image compression, is an interesting research 

subject that invite many researcher [1],[2], [4], [6] and others to participate in. That makes many 

algorithms of DCT is developed. 

1.4.1. 2-D Discrete Cosine Transform (DCT) 

There are several ways to compute 2-D DCT. It can be computed with straightforward 

computation just multiply input vector by raw DCT coefficients without any algorithm [1]. This 

method is fast but need large logic utilization, especially multiplier. This method is fully 

pipelined in this paper. FPGA chip usually has only a few multipliers. In this case, Spartan-3E 

XCS500E has only 20 multipliers. This paper adopts the work of [2] The Discrete Cosine 

Transform is an orthogonal transform consisting of a set of basis vectors that are sampled cosine 

functions. The 2-D DCT of a data matrix is defined as equation (1) 

             ……………………. (1)              

Where X is the data matrix, C is the matrix of DCT Coefficients, and Ct is the Transpose of C.  

An expanded form of (1) is as followed: 

 

Where, for an N x N data matrix, 
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       …(2) 

For k = 1, 2… N, l = 2, 3… N, and ck, l = N 
-1/2

 for l = 1.      

The 2-D DCT (8 x 8 DCT) is implemented by the row-column decomposition technique. We 

first compute the 1-D DCT (8 x 1 DCT) of each column of the input data matrix X to yield X
t
C. 

after appropriate rounding or truncation, the transpose of the resulting matrix, C
t
X, is stored in 

an transpose buffer. We then compute another 1-D DCT (8 x 1 DCT) of each row of CtX to 

yield the desired 2-D DCT as defined in equation (1). A block diagram of the design is shown in 

Fig 2. 

 

Fig 2:  2D-DCT Architecture 

1.5. Quantization 

Our 8x8 block of DCT coefficients is now ready for compression by quantization. A remarkable 

and highly useful feature of the JPEG process is that in this step, varying levels of image 

compression and quality are obtainable through selection of specific quantization matrices. This 

enables the user to decide on quality levels ranging from 1 to 100, where 1 gives the poorest image 

quality and highest compression, while 100 gives the best quality and lowest compression. As a 

result, the quality/compression ratio can be tailored to suit different needs. Subjective experiments 

involving the human visual system have resulted in the JPEG standard quantization matrix. With a 

quality level of 50, this matrix renders both high compression and excellent decompressed image 

quality. From [5] the Quantization matrix is obtained.   

        

 

Fig 3. Quantization Matrix 
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1.6. Zigzag Reordering Buffer  

Each block of data that is output by the quantization module needs to be reordered in a zigzag. 

This reordering is achieved using an 8 x 8 array of register pairs organized in a fashion similar to 

the transpose buffer. Quantized output is sent sequentially byte-by-byte in zigzag pattern. Zigzag 

operation is done for every 8X8 block. The pattern is shown in figure 2 [5]. Numbers listed in the 

figure are the address of 64 data that is arranged in a zigzag pattern.                                                                                                                       

 

Fig.4 Zigzag Pattern 

2. FPGA IMPLEMENTATION 

2.1. System Architecture 

The entire system architecture to be implemented in FPGA is shown in figure 5. Input data is 

inserted into the system every 8 bit sequentially. Actually, many DCT designs insert the input to 

the DCT in parallel. For example is 8 x 8 bit [1], [4],[6]. This is ideal for DCT computing because 

it only consumes a clock cycle to insert data to 1D-DCT unit. With sequential manner, it takes 8 

clock cycles to insert a set of data (8 points) to the DCT unit. The sequential architecture is 

chosen to save I/O port in FPGA chip. Some 2D-DCT intellectual property designs from Xilinx 

also use 8-bit input [10]. The 8-bit input architecture is also fit to many camera modules. 

 

Fig.5 System Architecture 

The 2D-DCT architecture, combined with zigzag and quantization used in this paper is shown in 

Fig. 5. The 2DDCT module construction is modified from [2] that also put the data sequentially 
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into the module. Thus, the architecture of 2D-DCT was divided into two 1D DCT modules and 

one transpose buffer. The same 1D DCT module is used twice. The transpose buffer operates like 

a temporal barrier between the first and the second 1D DCT. It made from static RAM with two 

sets of data and address bus. One for read process and the other for write. 

2.2.1D-DCT Pipeline Process 

Since the DCT input/output has 8 points and data has to be entered and released in sequential 

manner, it takes 8 clock cycles for each input and output process. Totally, 8 points 1D-DCT 

computation needs 22 clock cycles. Design for data input and output in this paper is inspired by 

design from [2]. The input and output process visualization is shown in figure 6. In this paper, 

system computes every step in a clock cycle, so DCT computation can be done faster. 

            

 

Fig.6 Data input/output process visualization of   clock cycles for 8 points 1D-DCT 

 

2.3. Transpose Buffer 

Transpose buffer is static RAM, designed with two set of data and address bus. It has input and 

output data and address buses, the structural construction of transpose buffer is shown in fig.7. 

The input to the transpose buffer comes from output of first 1D-DCT. Address in, out, and WE 

(write enable) are generated from controller module. Input address is generated in normal 

sequence (0,1,2,3,4,5,6, …, 63) but output address is generated in transposed sequence 

(0,8,16,24,32,40,48,56,1,9,17,..,55, 63). Output process begins after the entry of all 64 inputs. It 

gives the time latency between first input and first output. The output of transpose buffer is fed 

directly to the input of second 1D-DCT unit and the chain of sequences continues in same order. 
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Fig.7 Transpose Buffer Block Diagram 
 

2.4. Quantizer 

The Quantization process in JPEG image compression is done by dividing each and every 2D-

DCT coefficient by quantizing values from quantization table shown in fig 3. This quantizer 

module consists of ROM and divider. These quantizing values are first stored in ROM. The 

divider carries out division in a pipelined manner. The first DCT coefficient coming out from 2D-

DCT module is divided by the first value from the quantization table (which  was already stored 

in ROM), and second DCT coefficient is divided by second value from the table, like wise total 

64 coefficients are divided by the values in quantization table. In this quantization process also 

we used pipeline architecture. Block Diagram of the implementation is shown in fig 8. 

2.5. Zigzag Buffer 

Zigzag buffer is made from static RAM. Its construction is like transpose buffer. It has two sets of 

data – address bus. Input address bus is accessed by normal sequence, but output address is given 

some zigzag sequence described in fig 4. Zigzag address is generated by a zigzag RAM. The 

sequence is stored in the RAM. When the RAM address bus is accessed by normal address 

sequence, RAM data bus will emit zigzag value. Figure 8 describe zigzag buffer and RAM 

construction in the system. 
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Fig.8 Quantization & Zigzag Architecture 
 

3. SIMULATION RESULTS 

The 2-D DCT, Quantization and Zigzag architecture was described in VHDL. This VHDL was 

synthesized into a Xilinx Spartan 3E family FPGA [7]. System is tested with gray scale image. 

Simulation of VHDL values are compared with MATLAB values. The complete synthesis results 

to Spartan-3E FPGA are presented in table 1, whose hardware was fit in an XCS500E device. The 

table 2 presents the comparison between [1] and the present work in this paper. 

 

Table 1.device utilization using Xilinx spartran-3E for total architecture proposed in this paper. 

 
 

 

 

 

Logic Units 

 

 

Used 

 

Available 

 

Utilization 

 

Number of slices 

 

1891 

 

4656 

 

40% 

 

Number of slices FFs 

 

2450 

 

9312 

 

26% 

 

Number of 4 input LUTs 

 

1671 

 

9312 

 

17% 

 

Number of Bonded IOBs 

 

51 

 

231 

 

21% 

 

Number of multipliers 

18x18 

 

8 

 

20 

 

40% 
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Table 2.present paper’s 2D-DCT result is compared with work of 2D-DCT design of [1]. 
 

 

 

Logic Units 

 

This paper (only 2D-DCT) 

 

Presented[1] 

 

Number of slices 

 

1235 

 

7260 

 

Number of slices FFs 

 

1551 

 

9644 

 

Number of 4 input 

LUTs 

 

1239 

 

11194 

 

Number of Bonded 

IOBs 

 

23 

 

101 

 

Number of multipliers 

18x18 

 

8 

- 

 

 

Table 3. Present paper’s 2D-DCT (with Quantization & zigzag process) result is compared with 

result with [8]. 
 

 

Logic units 

   

This paper(2D-DCT,quantization,zigzag) 

 

Presented [8] 

 

Number of 4 input 

LUTs 

 

1671 

 

5276 

 

Number of slices 

 

1891 

 

3070 

 

Clock freq(MHz) 

 

101.35 

 

31.1 
 

 

According to synthesis result, maximum time delay produced is 9.004 ns. That constraint yields 

minimum clock period 9.866 ns. Maximum clock frequency can be used is 101.355MHz. 

Maximum delay synthesized is much smaller than delay produced in [4]. 1D-DCT designed in [4] 

yields maximum time delay 76.03 ns.System [4] uses fully parallel processing without clock to 

compute  8 points 1D-DCT. That system is used as comparison reference because it uses same 

FPGA with this system. Since the system in paper [1] uses Vertex FPGA that has higher 

frequency than Spartan, the delay is much smaller than this system and maximum frequency is 

higher. Maximum frequency in [1] is 308.182 MHz this system is also faster than 2D-DCT 

described in [6]. System [6] has minimum period 82.1 ns.The uses of pipeline process gives the 

system latency. When results are compared with [8] the slices, LUT’s are decreased and clock 

frequency is increased to 101MHz. The output exists several clock cycles after the first input. 

Latency produced in 2D-DCT is 94 clock cycles, quantizer output at 118 clock cycles. Overall 

system (quantized and zigzag 2D-DCT) has latency 140 clock cycles. As comparison, 2D-DCT 
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designed in [6] has latency 160 clock cycles. The better result reached by system in [1]. It takes 

37 clock cycles as system latency to compute 2D-DCT. 

 

Fig 9 Output for only 2D-DCT  

 

 

Fig 10 Output after for Quantization 

 

 

Fig 11 Output after zigzag  
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Fig 12 Device Utilization Summery  

4. CONCLUSION 

The jpeg image compression is designed in VHDL and is tested with gray scale image. The 

accuracy of computation is compared to Matlab computation result with similar operation. This 

Comparison yields Mean Square Error value MSE = 0.060552, which is computed for 64 bits of 

data in pipelined process causes latency in the system. The latency produced from this system is 

140 clock cycles. Maximum frequency can be achieved by this system is 101.35 MHz Sequential 

pipeline design gives higher frequency than fully parallel design in [4]. The design takes 1891 

slices, 2450 slice FF, 1671 LUT’s and 8 multipliers such that the area is also reduced when 

compared to previous work. It is suitable for implementing on FPGA like Xilinx XCS500E. The 

sequential operation of DCT saves logic utilization in FPGA compared with [1] to a much larger 

extent. Each step of DCT algorithm is executed on each clock cycle. Every step consists of 8-9 

operation. Thus this method is fast and had very less complexity.  
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