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ABSTRACT 

A simulation based design evaluation is reported for SOI FinFETs at 22nm gate length. The impact of 

device parameters on the static power dissipation and delay of a CMOS inverter is presented. Fin 

dimensions such as Fin width and height are varied. For a given gate oxide thickness increasing the fin 

height and fin width degrades the SCEs, while improves the performance. It was found that reducing the fin 

thickness was beneficial in reducing the off state leakage current (IOFF), while reducing the fin height was 

beneficial in reducing the gate leakage current (IGATE). It was found that Static power dissipation of the 

inverter increases with fin height due to the increase in leakage current, whereas delay decreased with 

increase fin width due to higher on current. The performance of the inverter decreased with the 

downscaling of the gate oxide thickness due to higher gate leakage current and gate capacitance. 
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1. INTRODUCTION 

Following the International Technology Roadmap of Semiconductors (ITRS), various non-

classical silicon on insulator (SOI) device structures having thin silicon bodies promise increased 

transistor speed, reduced power consumption and enhanced device scalability. Several innovative 

multiple gates SOI structures such as Double Gate (DG) MOSFET [1], fully depleted lean 

channel transistor (DELTA) [2] “Gate All Around”(GAA) MOSFET [3], Pi-gate MOSFET [4] 

and FinFET [5-8], have been proposed by various researchers. It is expected that sustained scaling 

during the next decade will see the complete evolution from the single gate (SG) conventional 

device to the above mentioned multiple gate MOSFETs (MuGFETs)[9]. One of the main 

advantages of MuGFETs is that they offer superior scalability with manufacturability of 

conventional planar transistors. The self-aligned gates wrapping around both sides of the fin can 

be fabricated with a single lithography and etch step. On the other hand, the fabrication process of 

MuGFETs suffers from some process challenges such as the precise control of the fin width and 

fin height and non-uniformity of the gate oxide on the etched sidewall of the fin, which is difficult 

to achieve. Similarly, the channel–oxide interface condition is determined by the sidewall 

roughness of the fin and large parasitic resistance between the channel and source/drain is another 

challenge to the performance of MuGFET devices. Since real devices go through many 

processing steps, reliable evaluation or design optimization of final devices depend on the 

optimized unit process development.  
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Technology Computer Aided Design or TCAD process simulation is therefore a prerequisite to 

device optimization or device design through device simulation. Due to the inherent link between 

process simulation and device simulation enabling the full optimization loop from unit process to 

device characteristics, one can correlate the electrical behavior of the device with small changes 

in the unit processes (e.g.time, temperature, doses, and energies). Since the process simulation 

enables virtual processing and in this way explores parameter space of processing options, a 

necessary prerequisite is that the processes to be modeled have adequately been implemented in 

the modeling software and that the required parameters have been calibrated. 

                                           

 

Figure 1: 3D Cross sectional view of a 22nm triple gate SOI FinFET device. 

Double gate and Triple gate FinFETs are promising candidates because of their quasi-planar 

structure, excellent roll-off characteristics, drive current and they are close to their root, the 

conventional MOSFET in terms of layout and fabrication. FinFET devices are explicitly 

mentioned in the ITRS roadmap and have a good potential for scaling CMOS to 22 nm and 

below. Such devices include double gate FinFETs, Triple gate or Multigate FinFETs and allow 

the scaling down to sub-50nm gate length. Both logic and SRAM FinFET technologies have been 

previously demonstrated [10]. Previous work have shown the performance and power advantage 

of FinFET circuits over bulk CMOS [11-13]. FinFET technology has been used to improve the 

performance, standby power consumption, and variability in nanoscale-CMOS digital ICs, which 

find its application in SRAM Cells extensively [14]. 

Pei et al. [15] have presented design consideration based on 3D analytical modeling using 

Laplace equation. Short-channel effects (SCEs) and subthreshold behaviour of FinFETs were 

studied with different fin height, fin thickness and channel length. Muhammad Nawaz et [16] has 

evaluated the performance of 30nm SOI FinFET for different device parameters within the 

context of assessing the device design and underlying fabrication process. He has compared the 

performance of SOI FinFETs with the Bulk FinFETS for their usage in DRAM, SRAM and I/O 

applications [17]. Muhammad Nawaz has demonstrated SRAM cells and ring oscillators with 

inverter delay of 13.9 pS using metal gate SOI FinFETs [18]. 

 

To bring more functionality to a chip, the number of transistors is increased, resulting in increased 

power density and total power consumption. Total power consumption is dominated by active 
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power during switching of a transistor. However, in deep submicrometer technology nodes, the 

contribution of leakage power dissipation (due to sub threshold and gate leakage) to the total 

power is increasing. Increased power results in high die temperatures and hence necessitates 

efficient cooling solutions. Aditya Bansal and Kaushik Roy have analysed FinFET based circuits 

for leakage and static power dissipation for thermal runaway [19,20].  

 

     

(a)                                                                    (b) 

Figure 2: Internal view of (a) SOI FinFET showing the Fin and (b) Poly gate wrapping around the 

Fin 

This work focuses on the implementation of a complete process flow of 22nm triple gate SOI 

FinFET into a commercially available numerical 3D process and device simulation environment. 

Modelling, Analysis and Device Characterization of the device is carried out by implementing a 

full process flow using a commercial three-dimensional technology CAD (TCAD) tool. The 

device parameters are varied and the impact of the device parameters on the performance of 

CMOS inverter has been presented by evaluating the inverter for static power dissipation and 

delay. 

2.  PROCESS AND DEVICE SIMULATION 

The Device targeted here is 22nm triple gate SOI based FinFET. This section describes the 

complete modeling and simulation of the device. We also discuss the circuit performance of the 

device in a CMOS inverter. 

2.1. Process simulation 

Commercially available TCAD Sentaurus-process and Sentaurus-device simulators from 

Synopsys [21] have been used in this work. Semiconductor process simulation is the modeling of 

the fabrication of semiconductor devices. The ultimate goal of process simulation is an accurate 

prediction of the active dopant, stress distribution and the device geometry. The critical process 

steps for FinFETs on standard SOI involve fin formation, gate oxide growth, gate formation 

(100nm polysilicon), spacer formation (silicon nitride) and source-drain formation. No halo 

implants were used for setting threshold voltage in the nominal process flow. Figure 1 shows 3D 

cross sectional view of the triple gate SOI FinFET device with all regions. Figure 2 shows the 

internal view of the device showing the thin fin formed between source and drain in a NSOI 

FinFET. Figure also shows the patterned fin wrapped under the poly gate.  

Table 1 summarizes the device parameters and their dimensions for a nominal device. Process 

Simulation is carried out by meshing the device and generating the mesh for the further device 

simulation.   



International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.5, October 2012 

82 

Table 1: Nominal Device Dimensions 

DEVICE PARAMETERS VALUE (nm) 

Gate length 22 

Fin Width 5 

Fin Height 20 

Gate Oxide 1.5 

Spacer Width 10 

BOX Thickness 150 

 

2.2. Device Simulation 

Device simulation starts from the output of process simulation. Device simulation tools simulate 

the electrical characteristics of semiconductor devices, as a response to external electrical, thermal 

or optical boundary conditions imposed on the structure. Device simulations have been performed 

using Hydrodynamic carrier transport model, which solves the carrier temperature and heat flow 

equations in addition to the Poisson and carrier continuity equations. This model is useful in 

simulating devices ranging from deep submicron MOSFETs beyond the 0.18µm generation and 

heterostructure devices. IOFF was defined at VGS=0V, and VDS=1V. Similarly, ION   was defined at 

VGS=VDS=1V. 

 

2.3. CMOS Inverter Realization 

The performance of the SOI FinFET devices has  been  evaluated  by  implementing the devices 

in the basic inverter circuit comprising of a PSOI FinFET and  a  NSOI FinFET  device with 

22nm gate length. The width ratio of PMOS to NMOS is 2:1 to obtain symmetrical 

characteristics. 
 
The dual fin architecture provides for the necessary area factor. Mixed mode simulations are 

carried out to realize the inverter circuit. The Noise margins and delays are calculated from the 

inverter’s voltage transfer characteristics and transient response curves respectively. The total 

gate capacitance of the device is obtained by simulating the device for AC analysis and obtaining 

the CV (capacitance- voltage) sweep. The main aim is to control the off state leakage current and 

direct gate tunnelling current thereby minimizing the total static power dissipation of the circuit. 

The power and delays for other dimension variations are calculated analytically and analysed. 

3. RESULTS AND DISCUSSION 

Following the process flow, the 22nm gate length SOI FinFET is simulated for various device 

parameter variations and the transfer characteristics are obtained. Also the SCEs are noted for 

each case and analysed in this section. Figure 3 shows the transfer characteristics of the device 

with varying fin width for a fixed fin height and also for varying fin height for fixed fin width. As 

the fin widths are varied for 5, 8, 12nm and fin heights through 10, 20 and 40nm the on current 

and transconductance increases. On current increases linearly for thicker and higher fin devices. 

For example on current increases from 0.824mA to 1.08mA (31%) for a fin width increase from 

5nm to 12nm for a fixed fin height of 20nm whereas increases from 0.558mA to 0.837mA (50%) 

for a fin height increase from 10nm to 40nm for a fixed fin width of 5nm.That is, the 

transconductance increases by 27.3% and 44% for fin width and fin height variations 

respectively. Both ION and IOFF increase with the increase in fin width. With increasing fin width, 

IOFF increases from 0.171pA to 3.42pA, which is because of increased short channel effects, while 

ION increases due to decreased external resistance and threshold voltage. The on/off-current 
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behavior extracted from fin height variation shows that the on current increases quasi-linearly 

with fin height, while off current remains approximately unaffected at fixed fin width. For a given 

gate length, the simulation results show that on current is higher for taller fin devices. 

  

(a) 

 
(b) 

Figure 3: Transfer characteristics of SOI FinFET for different (a) Fin Widths and (b) Fin heights 

It is found that fin width is the dominant factor that controls the short channel effects. Figures 4 

and 5 show the SCE behavior for fin width and fin height variations. Figures show off state 

leakage current (IOFF), threshold voltage (VTH), drain induced barrier lowering (DIBL), sub 

threshold voltage slope (SS) and gate leakage current (IGATE) behavior for varying fin widths and 

fin heights. We observe that the subthreshold slope, drain induced barrier leakage and IOFF are 

quite sensitive to the variation in fin width. For example DIBL and SS change from 33 to 

59mV/V (69%) and 63.7 to 69.8 mV/dec (8.2%) respectively, with fin width variation from 5 to 
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12nm at 20nm fin height. The threshold voltage decreases from 0.707V to 0.689V (2.6%), when 

fin width is increased from 5nm to 12nm for an NSOI FinFET. 

 

     
                                   (a)                                                            (b) 

 

      
                                (c )                                                              (d) 

 

 
                                                                 (e) 

 

Figure 4: Impact of Fin width on (a) IOFF   behavior, (b) Threshold Voltage, (c) DIBL, (d) 

Subthreshold Slope and (e) Gate leakage current. 

As ultra thin oxide is needed for scaled sub-50nm MOSFETs, direct tunneling current results in 

exponential increase in the gate leakage current, increased power consumption and hence 

deterioration in the device performance. The SCE behaviour of the devices for different oxide 

thickness of 1,1.5 and 1.8 nm  at fixed fin width and fin height, are reported in Figure 6. 

As the gate dielectric gets thinner, the gate voltage controls the channel more effectively. The 

effect of DIBL and SS also reduces with thinner gate oxide.A quasi-linear decrease in DIBL and 

SS was observed with varying gate oxide from 1.8 to 1 nm. DIBL and SS change from 36 to 

28mV/V(28.5%) and 64.3 to 62.7 mV/dec(2.5%), respectively, with gate oxide thickness 
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reducing from 1.8 nm to 1nm at fixed fin width and fin height for a N type FinFET.The threshold 

voltage decreases by 1.6% i.e 0.1V decrease for  approximately 1nm reduction in gate  

 

       
                              (a)                                                                  (b) 

 

       
                                (c )                                                              (d) 

 

 

 
(e) 

 

Figure 5:  Impact of Fin height on (a) IOFF   behavior, (b) Threshold Voltage, (c) DIBL, (d) 

Subthreshold Slope and (e) Gate leakage current. 

oxide thickness.On current and transconductance increases with decrease in gate oxide. On 

current increases from 742µA to 928µA (25%) for reduction of gate oxide thickness from 1.8 to 

1nm.The most important factor being the direct gate tunneling current, increases from 0.1pA to 

2.68 nA i.e by 3 orders of magnitude (2.6*10
3 

) when the gate oxide is reduced from 1.8nm to 

1nm for a NSOI FinFET. The off current reduces with decrease in oxide thickness.Though the 

other SCEs reduce, the leakage factor is the dominant factor which limits the continuous scaling 

of the gate oxide thickness ,which leads to high static power dissipation. 
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(a)                                                      (b) 

 

     

                                 (c)                                                                 (d) 

 

 

(e) 

Figure 6:  Impact of Gate oxide thickness on (a) IOFF   behavior, (b) Threshold Voltage, (c) DIBL, 

(d) Sub threshold Slope and (e) Gate leakage current. 

We have studied the impact of the device parameter variations on the performance of CMOS 

inverter (Static power dissipation and Delay). We evaluated the delay (Td) and the static power 

dissipation (Pstatic) for an inverter with nominal values and also for other parameter variations. 

Delay is better figure of merit, since it takes into account the capacitance associated with the 

structure as well as the current drivability. [22, 23] The delay associated with inverter, Td is given 

by the equation Td= Cgg*VDD/ION , where Cgg is the total gate capacitance which can be obtained by 

the CV sweep of the devices and VDD is the supply voltage (1 volt). We have calculated the rise 

time delay (Trd ) with respect to on current of the P-device and fall time delay (Tfd) with respect to 

the on current of the N-device in each case of variation. 
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Power dissipation of any logic gate can be expressed as: Ptotal = Pdyn + Pstatic , where Pdyn 

represents dynamic power dissipation due to charging, discharging of capacitances when the 

output signal of a logic gate makes a transition. Pstatic is the static power consumption due to the 

leakage current whose major components are the subthreshold leakage (IOFF), gate direct 

tunneling leakage (IGATE), and junction band-to-band tunneling leakage (Ibtbt) [24]. Hence Static 

power dissipation of the inverter is given by: Pstatic = VDD * Istatic = VDD * (IGATE + IOFF +Ibtbt). In 

double gate and triple gate SOI devices such as FinFETs, static power consumption is dominated 

by the subthreshold leakage and gate tunneling leakage. [25] In our FinFET devices, the body is 

left undoped, and the band-to-band tunneling leakage (Ibtbt) becomes negligible. Static power 

consumption is a strong function of temperature, while dynamic power consumption is weakly 

coupled with temperature variation, hence we do not consider these components (Pdyn and  Ibtbt ) of 

leakage in this paper. 

Figure 7 shows the Voltage Transfer characteristics (VTC) and Transient response of a Basic 

Inverter with nominal device dimensions. The noise margins for the inverter were calculated from 

the graphical method. The high level noise margin ( NMH) and low level noise margin (NML) was 

found to be 0.509Volts and 0.492 volts respectively. AC analysis was performed for a PSOI 

FinFET to obtain the total gate capacitance. The gate capacitance of the NSOI FinFET device is 

half of its counter part and hence total gate capacitance of the inverter is calculated. The gate 

capacitances for the other variations are calculated analytically, which is given by the equation, 

Cgg = εox/tox*Gate Area, where εox is the permittivity of the gate oxide and tox is thickness of the 

gate oxide. As gate area or oxide thickness varies, capacitance also varies. 

Table 2: Static power dissipation and Delay in an Inverter varying with Fin width for  

VDD = 1volt 

 

Table 2 summarizes the static power dissipation and delay of inverters for nominal fin width and 

for inverters whose fin widths are varied. We observe that though the total gate capacitance (Cgg) 

increases with increase in fin width, the rise time and fall time delays reduce which is due to 

higher on currents for thicker fins. The rise time and fall time delays reduce by 13.5% and 14.5% 

respectively, as the Fin width is increased from 5 to 12nm. There is marginal variation in static 

power dissipation (Input=1) as the fin widths are varied by a smaller factor. 
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Figure 7: Voltage transfer characteristics of a static CMOS Inverter (top) and Transient response 

of the Inverter (bottom) 

Similarly Table 3 summarizes the static power dissipation and delay of inverters for different fin 

heights. The static power dissipation increases by 2.5 times (77%) and delays increase by 3.6 

times when the Fin height is increased from 10nm to 40nm. Increase in power dissipation is due 

to increasing leakage currents (Gate leakage and IOFF) with Fin height, whereas increase in delay 

is due to increasing gate capacitance with gate area.   
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Table 3: Static power dissipation and Delay in an Inverter varying with Fin height for  

VDD = 1volt 

 

The static power dissipation and delay of inverters for different gate oxide thickness are tabulated 

in Table 4. The Static power dissipation increases exponentially from 0.15pW to 2.68nW (18*10
3  

times) for approximately 1nm reduction in gate oxide thickness. This is primarily due to large 

gate leakage current in ultra thin oxides. We also observe that gate delay increases by 46% with 

reduction in gate oxide thickness from 1.8nm to 1nm. This is due to the large gate capacitances 

associated with thinner oxides. Hence the overall performance of the inverter is not improved 

with the scaling of the gate oxide thickness. 

Table 4: Static power dissipation and Delay in an Inverter varying with gate oxide thickness for  

VDD = 1volt 

 

3. CONCLUSIONS 

A full process flow for a 22nm triple gate SOI FinFET has been implemented in this work.  

Various device parameters such as Finwidth, Fin height and Gate oxide thickness have been 

varied and the impact of these device parameters on the static power dissipation and delay of a 

CMOS inverter are presented. For a given fin thickness and increasing fin height, the threshold 

voltage, off-current, delay and SCEs remain approximately insensitive, while the on-current and 

transconductance increases approximately linearly with the increase in fin height. On the other 

hand DIBL, SS and off-current ( IOFF) are quite sensitive to the variations in fin width at fixed fin 

height. We found out that gate leakage increased exponentially with decrease in gate oxide 

thickness. The rise time and fall time delays of the CMOS inverter reduced by 13.5% and 14.5% 

respectively, as the Fin width is increased from 5nm to 12nm, showing improved performance in 

terms of delay. When the fin height is increased from 10nm to 40nm, the static power dissipation 

increased by 2.5 times (77%) and delays increased by 3.6 times. We observed increase in the 

Static power dissipation from 0.15pW to 2.68nW (18*103  times for Vin =1) for approximately 

1nm reduction in gate oxide thickness and increase in gate delay by 43.2% and 45.8%(Fall time 

delay and Rise time delay) with reduction in gate oxide thickness from 1.8nm to 1nm.Hence 

performance of the inverter degrades by increasing the Fin Height and with reduction in gate 

oxide thickness. Better Figure of merit in terms of delay is obtained with increase in Fin width. 

Keeping device scalability in mind, simulated device parameters like Static power dissipation, 

delay and capacitances based on realistic process flow provide a useful guide to the circuit 
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designer for low power, analog, RF and digital applications. Further scope of work may include 

improving the performance of inverter for other device design considerations. 
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