
International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

DOI : 10.5121/vlsic.2013.4107 73

A STUDY OF ENERGY-AREA TRADEOFFS OF VARIOUS

ARCHITECTURAL STYLES FOR ROUTING INPUTS IN A

DOMAIN SPECIFIC RECONFIGURABLE FABRIC

Anil Yadav

1
, Justin Stander

2
, Alex K. Jones

2
, and Gayatri Mehta

1

1
Department of Electrical Engineering, University of North Texas, Denton, TX, USA

2
Department of Electrical and Computer Engineering, University of Pittsburgh,

Pittsburgh, PA, USA
gayatri.mehta@unt.edu

ABSTRACT

Coarse-grained reconfigurable fabrics (CGRF’s) have great promise for achieving low-energy flexible

designs for an application domain. However a universally accepted architecture for coarse-grained

reconfigurable fabrics has not yet crystallized, and many architectural options are still un- der

consideration by the research and industry community. One scientific question is how to efficiently route

inputs through a CGRF. This paper addresses this question in part by exploring various alternative input

solu- tions for a stripe-based fabric. Alternative architectural styles examined in this paper include (i)

integrated constants (IC) approach where constants are loaded in the registers local to the functional

units; (ii) inputs coming from the side (ICS) where both constants and variable inputs can be routed to the

stripe directly where needed; (iii) ICS with extended vertical interconnect (ICS-EV); and (iv) a

combination of dedicated pass gates (DPs) with standard, IC, ICS, and ICS-EV architecture styles. We

implemented these architecture styles using 90 nm ASIC process from Synopsys. We perform a detailed

area and energy analysis on these architectures and present quantitative results in this paper. We observed

that the fabric with ICS and 50% DPs is the best among these options, providing 31% energy savings and

62% area savings over a baseline architecture for our benchmark set.

KEYWORDS

Reconfigurable computing, domain-specific architecture, reconfigurable architecture, coarse-grained

fabric

1. INTRODUCTION

Reconfigurable devices mitigate many of the problems encountered with the development of

Application Specific Integrated Circuits (ASICs) for hardware acceleration. For example,

reconfigurable devices amortize the rapidly increasing mask and non-recurring engineering

(NRE) costs over many more generic devices. Computer Aided Design (CAD) flows are often

simplified for these de- vices. Thus, the design cycle is much reduced, which can significantly

decrease the time to market.

The tradeoff for using these reconfigurable devices is a compromise in performance and most

notably power/energy consumption. To reduce the energy consumption of a reconfigurable

device, particular care must be given to designing both functional units and interconnect of the

device.

Stripe-based fabrics in particular (e.g., see Figure 2) are quite promising due to their good fit to a

data flow graph structure [5, 25, 8, 9]. When a data flow graph is mapped to a stripe-style

structure, however, data dependency edges often traverse multiple rows. Mapping of a data flow

graph onto a reconfigurable fabric is described in detail in Section 3.1. In these fabrics,

International Journal of VLSI design & Communication Systems (VL

arithmetic and logic units (ALUs) must often pass these values through without doing any

computation. In other words, the

of the signal and image processing applications, for example, that more than 50% of the

functional units in the fabric were used for routing by configuring the ALU as a pass

shown in Figure 1 [8].

Figure 1: Comparison of ALUs used for routing and computation

However, these ALUs used as passgates are an area

vertical routing. One alternative that has been studied is to use a simple routing struct

could only pass a value, i.e., a dedicated pass

order of magnitude more power than such a direct vertical route implementation. Previous

research has found, for example, that an architecture that a

provides 19% energy savings and 30% area savings [8].

There are a variety of possible ways to route inputs in the coarse

which approach is better because additional hardware must be

understand how well it is utilized. To better understand the tradeoffs, we present a quantitative

study of different architectures described briefly as follows. In this paper, we study (i) integrated

constants (IC) approach where constants are loaded in the registers local to the functional units;

(ii) inputs coming from the side (ICS) where both constants and variable inputs can be routed to

the stripe directly where needed; (iii) ICS with extended vertical interconnect (IC

a combination of dedicated pass gates (DPs) with standard, IC, ICS, and ICS

styles. In the standard implementation, inputs are routed from the top of the fabric and functional

units are used for passing information. This l

functional units that could have been used for actual computations are being used for pass

operation. Since there are many inputs that stay constant during the execution cycle, they can be

loaded to the registers local to the functional units. This approach will use additional registers for

loading constants but can save some functional units for being used only for passing information.

It provides 22% area savings and 13% energy savings on an average

architecture, we introduce small multiplexers to the inputs of each functional unit to provide

flexibility to read inputs from the top row or directly from outside the fabric. We find that the use

of such multiplexers allows substantial area savings through allowing smaller fabrics to carry the

same benchmark suites. The small additional power and energy cost of the additional hardware is

recovered easily through the fact that the overall fabric is smaller and fewer functional

used as pass gates. This approach achieves 51% area

Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

arithmetic and logic units (ALUs) must often pass these values through without doing any

the ALU’s function merely as pass-gates. It was observed for some

of the signal and image processing applications, for example, that more than 50% of the

functional units in the fabric were used for routing by configuring the ALU as a pass

Figure 1: Comparison of ALUs used for routing and computation

However, these ALUs used as passgates are an area-inefficient and power- inefficient method for

vertical routing. One alternative that has been studied is to use a simple routing struct

could only pass a value, i.e., a dedicated pass-gate. Using an ALU as a passgate requires over an

order of magnitude more power than such a direct vertical route implementation. Previous

research has found, for example, that an architecture that adds 50% DPs to an existing fabric

provides 19% energy savings and 30% area savings [8].

There are a variety of possible ways to route inputs in the coarse-grained fabrics. It is not obvious

which approach is better because additional hardware must be configured for some, we must

understand how well it is utilized. To better understand the tradeoffs, we present a quantitative

architectures described briefly as follows. In this paper, we study (i) integrated

ere constants are loaded in the registers local to the functional units;

(ii) inputs coming from the side (ICS) where both constants and variable inputs can be routed to

the stripe directly where needed; (iii) ICS with extended vertical interconnect (ICS-

a combination of dedicated pass gates (DPs) with standard, IC, ICS, and ICS-EV architecture

styles. In the standard implementation, inputs are routed from the top of the fabric and functional

units are used for passing information. This leads to the inefficient resource utilization because

functional units that could have been used for actual computations are being used for pass

operation. Since there are many inputs that stay constant during the execution cycle, they can be

registers local to the functional units. This approach will use additional registers for

loading constants but can save some functional units for being used only for passing information.

It provides 22% area savings and 13% energy savings on an average over the baseline. In the ICS

architecture, we introduce small multiplexers to the inputs of each functional unit to provide

flexibility to read inputs from the top row or directly from outside the fabric. We find that the use

ubstantial area savings through allowing smaller fabrics to carry the

same benchmark suites. The small additional power and energy cost of the additional hardware is

recovered easily through the fact that the overall fabric is smaller and fewer functional

used as pass gates. This approach achieves 51% area savings and 27% energy savings over the

SICS) Vol.4, No.1, February 2013

74

arithmetic and logic units (ALUs) must often pass these values through without doing any

gates. It was observed for some

of the signal and image processing applications, for example, that more than 50% of the

functional units in the fabric were used for routing by configuring the ALU as a pass-gate as

inefficient method for

vertical routing. One alternative that has been studied is to use a simple routing structure that

gate. Using an ALU as a passgate requires over an

order of magnitude more power than such a direct vertical route implementation. Previous

dds 50% DPs to an existing fabric

grained fabrics. It is not obvious

configured for some, we must

understand how well it is utilized. To better understand the tradeoffs, we present a quantitative

architectures described briefly as follows. In this paper, we study (i) integrated

ere constants are loaded in the registers local to the functional units;

(ii) inputs coming from the side (ICS) where both constants and variable inputs can be routed to

-EV); and (iv)

EV architecture

styles. In the standard implementation, inputs are routed from the top of the fabric and functional

eads to the inefficient resource utilization because

functional units that could have been used for actual computations are being used for pass

operation. Since there are many inputs that stay constant during the execution cycle, they can be

registers local to the functional units. This approach will use additional registers for

loading constants but can save some functional units for being used only for passing information.

over the baseline. In the ICS

architecture, we introduce small multiplexers to the inputs of each functional unit to provide

flexibility to read inputs from the top row or directly from outside the fabric. We find that the use

ubstantial area savings through allowing smaller fabrics to carry the

same benchmark suites. The small additional power and energy cost of the additional hardware is

recovered easily through the fact that the overall fabric is smaller and fewer functional units are

avings and 27% energy savings over the

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

75

baseline. We extended the ICS approach by introducing multi-level vertical interconnect in the

fabric. Now the functional unit can not only reach the functional units in the row above but can

also reach the functional units in the grand-parent and great-grand parent rows in the same

column. We use bigger multiplexers as compared to the ICS approach to provide that reachability

but now we can implement the same benchmarks on even smaller fabrics. It provides 60% area

savings and 27% energy savings over the baseline. In addition to these, we also studied the

combination of adding dedicated vertical routes to the standard, IC, ICS, and ICS-EV techniques.

Adding dedicated pass gates to these architectural options further increase the area and energy

savings.

While our technique applies to stripe-based reconfigurable fabrics in general such as PipeRench

([13, 14]) and Kilocore ([4]), and conceptually to the larger class of coarse-grained reconfigurable

fabrics, our technique is demonstrated using the low-energy domain specific fabric (DSF) target

([5]) shown in Figure 2.

The remainder of this paper is organized as follows: Section 2 provides some background

material in the area of reconfigurable computing and coarse-grain architectures in general. An

overview of the fabric target used in this paper to demonstrate the impact of the inputs coming

from the side is presented in Section3. Section 4 includes results and an analysis of energy

consumption for a suite of benchmark circuits. Section 5 discusses conclusions.

2. BACKGROUND AND LITERATURE REVIEW

A tremendous amount of effort has been devoted to the area of reconfigurable computing for

application acceleration with custom hardware. While FPGAs are the most commonly used

general purpose reconfigurable devices, they exhibit poor power characteristics.

Recently, the development and use of coarse-grained fabrics for computation- ally complex tasks

has received a lot of attention as a possible alternative to FP- GAs. Many architectures have been

proposed and developed both in academia and industry during the last two decades such as

MATRIX ([3]), Garp ([23]), MorphoSys ([24], [26], [6]), RaPiD ([7], [15]), PipeRench ([13],

[14], [16]), HF- PGA ([10]), Kilocore ([4]), Pact XPP ([29]), CFPA ([11]), Montium ([12],[17]),

ADRES ([18]), SmartCell ([19], [1]), and the coarse-grained architectures devel- oped by

[2],[27].

MATRIX (Multiple ALU architecture with Reconfigurable Interconnect eX- periment) [3] is

comprised of a two-dimensional array of identical 8-bit functional units with a configurable

network. Each functional unit consists of a 256x8-bit memory, an 8-bit ALU and a control logic.

The Garp [23], the Chimaera [28], the MorphoSys [24], and the SuperCISC [20] architectures

combine a reconfigurable computing device with a processor in order to do hardware

acceleration. RaPiD (Reconfigurable Pipelined Datapath) [7, 15], mainly intended for

computation- intensive applications, consists of a linear array of application-specific functional

units. PipeRench [13, 14], Kilocore ([4]) have a striped configuration and is comprised of an

interconnected network of configurable logic blocks and storage elements. It consists of a set of

physical pipeline stages called stripes and each stripe contains a set of processing elements,

register files, and an interconnec- tion network. The CFPA (Computational Field Programmable

Architecture) [11] consists of Partial Add, Subtract, and Multiply (PASM) blocks for im-

plementing data path operations of computational intensive applications. The PASM block

operates on 4-bit operands and can be connected together to im- plement adders, subtracters, and

multipliers of various sizes. The HFPGA (Hi- erarchical Field Programmable Gate Array) [10]

allows the creation of coarse grain blocks built from traditional 4-input lookup tables. These

coarse grain blocks have dedicated routing channels. ADRES ([18]) implemented and eval- uated

several inter-connection topologies that includes simple mesh and more complex schemes, where

one functional unit can transmit data to non-adjacent functional units in the same row or non-

International Journal of VLSI design & Communication Systems (VL

adjacent functional units in the same column. Pact XPP Technologies [21] propos

architecture, which has a hierarchical array of coarse

Processing Array Elements (PAEs) and a packet

core is comprised of a rectangular array of ALU

reconfigurable fabric architectures have sequential structure and use local registers or shared

register files for storing data values. Of these, PipeRench and Kilocore are stripe

grain fabrics. These fabrics used pas

from one stripe to the other. [22] describes how to manage short

coarse-grained fabrics. They discuss various architectural options for storing values when

optimizing for area and energy. They consider constants as long

register files. In this paper, we present a detailed energy and area analysis of various architectural

techniques including integrated constants, inputs coming form th

approach with extended vertical interconnect and the combination of dedicated pass gates with

standard, IC and ICS. Dedicated pass gates are also incorporated to reduce the usage of functional

units as pass gates to pass co

(consumer) (especially when the consumer is separated by multiple stripes from the producer).

In our previous research, we studied the impact of varying different design parameters such as the

width of the functional units, homogeneous vs. heterogeneous functional units, various functional

unit implementation techniques, granularity of the interconnect, interconnect patterns,

horizontal and vertical routing onto physical characteristics like

[5, 25, 8, 9]. We attempted to minimize the cardinality of the

operations supported by each ALU, and maximize the use of dedicated pass gates in the fabri

We observed that even with all of the

remain and results appear to be area

approaches in this paper. To our knowledge, no one has yet presented a sys

of input routing alternatives as considered in this paper.

3. DOMAIN SPECIFIC FABRIC

Stripe-based hardware fabrics are

application onto the device. We

architecture shown in Figure 2, although a similar approach could be used for other stripe

architectures.

Figure 2: The fabric model is comprised of ALUs and a reconfigurable interconnect

For our examples, ALUs are organized

functional unit operates independently. The results of these ALU operations are then fed into

interconnection stripes constructed using multiplexers.

Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

adjacent functional units in the same column. Pact XPP Technologies [21] propos

architecture, which has a hierarchical array of coarse-grained adaptive computing elements called

Processing Array Elements (PAEs) and a packet-oriented communication net- work. An XPP

core is comprised of a rectangular array of ALU-PAEs and RAM-PAEs with I/O. These

reconfigurable fabric architectures have sequential structure and use local registers or shared

register files for storing data values. Of these, PipeRench and Kilocore are stripe-based coarse

grain fabrics. These fabrics used pass register files to manage constants and pass computed values

from one stripe to the other. [22] describes how to manage short-lived and long- lived values in

grained fabrics. They discuss various architectural options for storing values when

zing for area and energy. They consider constants as long-lived values and store them in

register files. In this paper, we present a detailed energy and area analysis of various architectural

techniques including integrated constants, inputs coming form the side, the hybrid of IC and ICS

approach with extended vertical interconnect and the combination of dedicated pass gates with

standard, IC and ICS. Dedicated pass gates are also incorporated to reduce the usage of functional

units as pass gates to pass computed values from one stripe (producer) to another stripe

(consumer) (especially when the consumer is separated by multiple stripes from the producer).

In our previous research, we studied the impact of varying different design parameters such as the

h of the functional units, homogeneous vs. heterogeneous functional units, various functional

unit implementation techniques, granularity of the interconnect, interconnect patterns,

tical routing onto physical characteristics like power, performance, and area

[5, 25, 8, 9]. We attempted to minimize the cardinality of the interconnect and the number of

operations supported by each ALU, and maximize the use of dedicated pass gates in the fabri

all of the optimizations a very large number of ALUs as pass

remain and results appear to be area-inefficient, which motivates the idea of exploring alternative

approaches in this paper. To our knowledge, no one has yet presented a sys- tematic exploration

input routing alternatives as considered in this paper.

ABRIC OVERVIEW

are designed to easily map data flow graphs (DF

e illustrate our results by modifying the domain specific fabric

architecture shown in Figure 2, although a similar approach could be used for other stripe

Figure 2: The fabric model is comprised of ALUs and a reconfigurable interconnect

For our examples, ALUs are organized into rows or computational stripes within which each

functional unit operates independently. The results of these ALU operations are then fed into

constructed using multiplexers.

SICS) Vol.4, No.1, February 2013

76

adjacent functional units in the same column. Pact XPP Technologies [21] proposed the XPP

grained adaptive computing elements called

work. An XPP

PAEs with I/O. These

reconfigurable fabric architectures have sequential structure and use local registers or shared

based coarse

s register files to manage constants and pass computed values

lived values in

grained fabrics. They discuss various architectural options for storing values when

lived values and store them in

register files. In this paper, we present a detailed energy and area analysis of various architectural

e side, the hybrid of IC and ICS

approach with extended vertical interconnect and the combination of dedicated pass gates with

standard, IC and ICS. Dedicated pass gates are also incorporated to reduce the usage of functional

mputed values from one stripe (producer) to another stripe

(consumer) (especially when the consumer is separated by multiple stripes from the producer).

In our previous research, we studied the impact of varying different design parameters such as the

h of the functional units, homogeneous vs. heterogeneous functional units, various functional

unit implementation techniques, granularity of the interconnect, interconnect patterns, and

power, performance, and area

interconnect and the number of

operations supported by each ALU, and maximize the use of dedicated pass gates in the fabric.

optimizations a very large number of ALUs as pass-gates

inefficient, which motivates the idea of exploring alternative

tematic exploration

FGs) from the

domain specific fabric

architecture shown in Figure 2, although a similar approach could be used for other stripe-based

Figure 2: The fabric model is comprised of ALUs and a reconfigurable interconnect

within which each

functional unit operates independently. The results of these ALU operations are then fed into

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

77

The fabric model was implemented in parameterized VHDL using the generic capability of the

VHDL language. The fabric size is determined with the parameters specifying the width of the

fabric W and height of the fabric H . W dictates the number of ALUs in each computational

stripe. H determines the number of computational and interconnection stripes in the fabric model

shown in Figure 2. The fabric architecture also has several early exit rows, spaced evenly in the

device. For example, for a fabric with height 18, every alternate row is connected to the exit row.

As soon as the output is computed, it can be sent to the nearest exit row which is connected to the

final output of the device. If the output is available in row 9, it will go the nearest exit row 10 and

then go the final output of the device. This saves a significant number of functional units in the

successive rows being used to pass outputs down the rows.

3.1. Mapping of applications onto domain-specific reconfigurable fabric

A mapping of a data flow graph (DFG) onto a reconfigurable fabric consists of an assignment of

operators in the DFG to ALUs in the reconfigurable fabric such that the logical structure of the

DFG is preserved and the architectural constraints of the fabric are followed. This mapping

problem is very critical to the use of the fabric because a mapping solution must be available each

time the fabric is reprogrammed for a specific DFG. Because of the layered nature of the fabric,

the mapping is also allowed to use ALUs as pass-gates, which take a single input and pass the

input value to one or more outputs. In general, not all of the available ALUs and edges will be

used. An example DFG and a corresponding mapping are shown in Figure 3 and Figure 4. The

DFG from Figure 3 is implemented on a baseline architecture where inputs and constants are

routed from the top of the fabric. ALUs used as operators are shown in white colored squares

with operators marked in them, ALUs used as pass gates are shown in blue color and labeled as

“P”. The inputs and outputs are shown in white colored ovals. Consider an ALU in row 11 and

column 10 i.e. ALU (11,10), shown in yellow color, one of its inputs is a constant and is being

routed all the way from the top of the fabric. It uses 10 ALUs for just passing this input to the

desired location. Obviously, routing alternatives for passing input values are needed.

This DFG has two outputs, one of which is computed and available very early in the fabric (in

row 4). Because of early exit rows in the fabric, this output can come out directly to the final

output without using any ALUs in the successive stripes for the pass operation.

3.2. Architectural exploration case studies

In order to conduct architectural exploration case studies, we selected a set of core signal

processing benchmarks from MediaBench benchmark suite includ- ing the ADPCM encoder

(enc), ADPCM decoder (dec), GSM channel encoder (gsm), and the MPEG II decoder (row,

col). We added the Sobel (sob) and Laplace (lap) edge detection algorithms to the benchmark

suite. We computed the number of operations and number of constants in each benchmark. Table

1 shows the number of operations and the number of constants contained in the benchmark suite.

Operations include only regular arithmetic, logic and shift operations such as addition,

multiplication, AND, OR, right-shift, etc. It also shows the number of pass gates required to pass

inputs and constants to the functional units where they are needed in the baseline architecture. As

it can seen that a large of functional units are being wasted for routing inputs and constants. For

example, in “enc”, 105 pass gates are used to route only 3 inputs and 14 constants.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

78

Figure 3: An example of a data flow graph (DFG).

3.3. Fabric architecture with dedicated pass gates (DP)

In order to reduce power consumption due to large numbers of ALUs being used as pass gates,

the use of dedicated pass gates, which simply route data vertically from one row to the next have

been explored ([8]). The dedicated pass gate can also be set to idle state when not being used.

Figure 5 shows the data flow graph (DFG) from Figure 3 mapped onto the architecture with 33%

DPs (1 out of 3). ALUs used as operators are shown in white colored squares with operators

marked in them, ALUs used as pass gates are shown in blue color and labeled as “P”, the

dedicated pass gates are shown in green color and are labeled as “DP”, and the white empty

squares are idle. Our goal here is to minimize the usage of ALUs for pass operations. As it can be

seen that the number of ALUs used as pass gates shown in blue color have been reduced from the

baseline architecture but there are still many ALUs which are being used for pass operation.

Figure 4: Example mapping of the DFG in Figure 3 onto a stripe-based coarse-grained fabric.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

79

Table 1: Number of operations, constants, inputs, pass gates in DFGs of the benchmarks

 enc dec row col gsm sob lap

Operations 36 29 52 61 29 24 29
Constants 14 20 23 32 20 10 5
Inputs 3 4 8 8 3 8 25
Pass gates 105 31 23 36 84 11 13

3.4. Fabric architecture with integrated constants (IC)

To implement the Integrated Constants (IC) architecture, we used a register to store a constant

and a 2:1 multiplexer for each operand of an ALU as shown in Figure 6. Each multiplexer can

take inputs from the stripe above and from a register. The first stripe of ALUs in the fabric

architecture takes variable inputs from the top and constant inputs from the registers; the ALUs in

the rest of the stripes can get their operands either from the predecessor stripe or from the register.

Figure 5: A DFG shown in Figure 3 mapped on the architecture with 33% DPs.

Figure 7 shows the DFG shown in Figure 3 mapped onto the architecture where constants are

routed directly to the functional units where needed using registers. In order to keep the figures

simple, we show the constants integrated inside the ALUs and variables are in bubbles off to the

sides. Constants are labeled within an ALU as “LC” and ”RC”. ”LC” stands for a left constant

and it means that the left operand of the ALU is a constant. ”RC” stands for a right constant and it

means that the right operand of the ALU is a constant. The same graph which used 16x14

standard fabric is using only 13x14 fabric with IC. It requires 19% fewer functional units to

implement the same DFG onto the fabric with IC than the standard implementation.

International Journal of VLSI design & Communication Systems (VL

Figure

Figure 7: A DFG shown in Figure

3.5. Fabric architecture with

To implement the ICS architecture, we used a 2:1 multiplexer for each operand of an ALU as

shown in Figure 8. Each multiplexer

first stripe of ALUs in the fabric architecture takes all inputs from the top. No multiplexers are

needed for the first ALU stripe. The ALUs in the rest of the stripes can get their operands eit

from the predecessor stripe or from the side. Each stripe has two busses, one for the left operand

and one for the right operand. Inputs are stacked in a single multi

bus, and required inputs are selected from this v

Figure 9 shows the DFG shown in Figure 3 mapped onto the architecture where inputs

are routed directly to the functional units where needed. The same graph which used 16x14

standard fabric is using only 4x14 fabric with ICS. It requires 75% fewer functional units to

implement the same DFG onto the fabric with ICS than the base

Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

 6: Fabric with Integrated Constants (IC).

Figure 3 mapped on the architecture with Integrated Consta

rchitecture with inputs coming from side (ICS)

To implement the ICS architecture, we used a 2:1 multiplexer for each operand of an ALU as

shown in Figure 8. Each multiplexer can take inputs from the stripe above and from the side. The

first stripe of ALUs in the fabric architecture takes all inputs from the top. No multiplexers are

needed for the first ALU stripe. The ALUs in the rest of the stripes can get their operands eit

from the predecessor stripe or from the side. Each stripe has two busses, one for the left operand

and one for the right operand. Inputs are stacked in a single multi-bit signal that is sent along the

bus, and required inputs are selected from this value by the left or right multiplexer.

Figure 9 shows the DFG shown in Figure 3 mapped onto the architecture where inputs

are routed directly to the functional units where needed. The same graph which used 16x14

standard fabric is using only 4x14 fabric with ICS. It requires 75% fewer functional units to

implement the same DFG onto the fabric with ICS than the baseline.

SICS) Vol.4, No.1, February 2013

80

Constants (IC).

To implement the ICS architecture, we used a 2:1 multiplexer for each operand of an ALU as

can take inputs from the stripe above and from the side. The

first stripe of ALUs in the fabric architecture takes all inputs from the top. No multiplexers are

needed for the first ALU stripe. The ALUs in the rest of the stripes can get their operands either

from the predecessor stripe or from the side. Each stripe has two busses, one for the left operand

bit signal that is sent along the

Figure 9 shows the DFG shown in Figure 3 mapped onto the architecture where inputs a constants

are routed directly to the functional units where needed. The same graph which used 16x14

standard fabric is using only 4x14 fabric with ICS. It requires 75% fewer functional units to

International Journal of VLSI design & Communication Systems (VL

Figure 8: Fabric with Inputs Coming from Side (ICS).

Figure 9: A DFG shown in Figure 3 mapped on the architecture with ICS.

3.6. Fabric architecture with

To implement this architecture, we used a 4:1 multiplexer for each operand of an ALU as shown

in Figure 10. Each operand can come either from the stripe above, the grandparent stripe

ALU(same column), the great grandparent stripe ALU(same column), or fr

Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

Figure 8: Fabric with Inputs Coming from Side (ICS).

Figure 9: A DFG shown in Figure 3 mapped on the architecture with ICS.

Fabric architecture with ICS with extended vertical interconnect (ICS

To implement this architecture, we used a 4:1 multiplexer for each operand of an ALU as shown

in Figure 10. Each operand can come either from the stripe above, the grandparent stripe

ALU(same column), the great grandparent stripe ALU(same column), or from the

SICS) Vol.4, No.1, February 2013

81

Figure 9: A DFG shown in Figure 3 mapped on the architecture with ICS.

ICS with extended vertical interconnect (ICS-EV)

To implement this architecture, we used a 4:1 multiplexer for each operand of an ALU as shown

in Figure 10. Each operand can come either from the stripe above, the grandparent stripe

International Journal of VLSI design & Communication Systems (VL

Figure 10: Fabric with IC and ICS with extended vertical interconnect (ICS

Figure 11: A DFG shown in Figure 3 mapped on the ICS

side and the 4:1 multiplexer provides this flexibility and reachability. The first stripe of ALUs in

the fabric architecture takes variable inputs from the top and constant inputs from the registers.

Each stripe has two busses, one for the left operand a

stacked in a single multi-bit signal that is sent along the bus, and required inputs are selected from

this value by the left or right multiplexer.

Figure 11 shows the DFG shown in Figure 3 mapped onto the architec

constants are routed directly to the functional units where needed. The same graph which used

16x14 standard fabric is using only 3x14 fabric with hybrid approach. It requires 81% fewer

functional units to implement the same DFG onto

Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

Figure 10: Fabric with IC and ICS with extended vertical interconnect (ICS-

Figure 11: A DFG shown in Figure 3 mapped on the ICS-EV architecture.

side and the 4:1 multiplexer provides this flexibility and reachability. The first stripe of ALUs in

the fabric architecture takes variable inputs from the top and constant inputs from the registers.

Each stripe has two busses, one for the left operand and one for the right operand. Inputs are

bit signal that is sent along the bus, and required inputs are selected from

this value by the left or right multiplexer.

Figure 11 shows the DFG shown in Figure 3 mapped onto the architecture where inputs a

constants are routed directly to the functional units where needed. The same graph which used

16x14 standard fabric is using only 3x14 fabric with hybrid approach. It requires 81% fewer

functional units to implement the same DFG onto this new architecture compared to the baseline.

SICS) Vol.4, No.1, February 2013

82

-EV).

EV architecture.

side and the 4:1 multiplexer provides this flexibility and reachability. The first stripe of ALUs in

the fabric architecture takes variable inputs from the top and constant inputs from the registers.

nd one for the right operand. Inputs are

bit signal that is sent along the bus, and required inputs are selected from

ture where inputs are

constants are routed directly to the functional units where needed. The same graph which used

16x14 standard fabric is using only 3x14 fabric with hybrid approach. It requires 81% fewer

this new architecture compared to the baseline.

International Journal of VLSI design & Communication Systems (VL

3.7. Fabric architecture with

To implement this architecture, we used a 4:1 multiplexer for each operand of an ALU as shown

in Figure 12. Each operand can come eith

right ALU(same row), or from the side and the 4:1 multiplexer provides this flexibility and

reachability. The first stripe of ALUs in the fabric architecture takes variable inputs and constants

from the top and results from the neighbor ALUs. Each stripe has two busses, one for the left

operand and one for the right operand. Inputs are stacked in a single multi

along the bus, and required inputs are selected from this value by t

Figure 13 shows the DFG shown in Figure 3 mapped onto the architecture where inputs and

constants are routed directly to the functional units where needed. The same graph which used

16x14 standard fabric is using only 6x6

functional units to implement the same DFG onto this new architecture compared to the baseline.

Figure 12: Fabric with IC and ICS with horizontal interconnect (ICS

Figure 13: A DFG shown in Figure

4. RESULTS

We performed detailed area and energy analysis on various architectural options including

standard, IC, ICS, ICS-EV, and a combination of dedicated pass gates with these approaches.

Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

Fabric architecture with ICS with horizontal interconnect (ICS-HI)

To implement this architecture, we used a 4:1 multiplexer for each operand of an ALU as shown

in Figure 12. Each operand can come either from the stripe above, the left ALU (same row), the

right ALU(same row), or from the side and the 4:1 multiplexer provides this flexibility and

reachability. The first stripe of ALUs in the fabric architecture takes variable inputs and constants

he top and results from the neighbor ALUs. Each stripe has two busses, one for the left

operand and one for the right operand. Inputs are stacked in a single multi-bit signal that is sent

along the bus, and required inputs are selected from this value by the left or right mulitplexer.

Figure 13 shows the DFG shown in Figure 3 mapped onto the architecture where inputs and

constants are routed directly to the functional units where needed. The same graph which used

16x14 standard fabric is using only 6x6 fabric with hybrid approach. It requires 84% fewer

functional units to implement the same DFG onto this new architecture compared to the baseline.

Figure 12: Fabric with IC and ICS with horizontal interconnect (ICS-HI).

: A DFG shown in Figure 3 mapped on the ICS-HI architecture.

We performed detailed area and energy analysis on various architectural options including

EV, and a combination of dedicated pass gates with these approaches.

SICS) Vol.4, No.1, February 2013

83

To implement this architecture, we used a 4:1 multiplexer for each operand of an ALU as shown

er from the stripe above, the left ALU (same row), the

right ALU(same row), or from the side and the 4:1 multiplexer provides this flexibility and

reachability. The first stripe of ALUs in the fabric architecture takes variable inputs and constants

he top and results from the neighbor ALUs. Each stripe has two busses, one for the left

bit signal that is sent

he left or right mulitplexer.

Figure 13 shows the DFG shown in Figure 3 mapped onto the architecture where inputs and

constants are routed directly to the functional units where needed. The same graph which used

fabric with hybrid approach. It requires 84% fewer

functional units to implement the same DFG onto this new architecture compared to the baseline.

HI).

HI architecture.

We performed detailed area and energy analysis on various architectural options including

EV, and a combination of dedicated pass gates with these approaches.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

84

Table 2 provides a summary of the size requirements of the seven signal and image processing

benchmarks mentioned in Section 3.2 mapped to various fabric architecture styles. The fabric size

is given by Width x Height. When we compare the various architecture alternatives with the base-

line, the benchmarks can fit in smaller width fabric. The benchmarks with more number of

constants such as “enc”, “dec”, “col”, and “gsm” show large area improvements. For example,

“gsm” implemented on standard fabric with 33% DPs was using 16-wide fabric whereas the same

benchmark when implemented on the fabric with ICS takes only 3-wide fabric.

Once all benchmarks were mapped to a fabric using a particular architecture, the fabric size was

fixed to the smallest size that could fit all seven benchmarks. The benchmarks can be mapped

onto smaller size fabric for ICS architectures as compared to the

Table 2: Fabric size (Width x Height) for mapping benchmarks onto various fabric architectures.

enc dec row col gsm sob lap

std-No DPs 17x16 16x14 18x10 20x12 18x18 10x10 15x8

std-25% DPs 16x16 15x14 13x10 15x12 15x18 9x10 13x8

std-33% DPs 16x16 14x14 13x12 16x12 16x18 10x10 14x8

std-50% DPs 10x16 10x14 11x12 12x18 11x18 8x10 13x10

IC-No DPs 12x16 13x14 12x10 13x12 11x18 8x10 13x8

IC-25% DPs 9x16 9x14 12x10 12x12 11x18 8x10 13x8

IC-33% DPs 11x16 10x14 12x10 11x12 9x18 8x10 13x8

IC-50% DPs 9x18 7x14 11x12 11x16 7x18 8x10 13x10

ICS-No DPs 9x16 4x14 9x10 9x12 5x18 7x10 8 x10

ICS-25% DPs 7x16 4x14 8x10 8x12 3x18 6x10 8x10

ICS-33% DPs 6x16 4x14 8x10 7x12 3x18 6x10 8x10

ICS-50% DPs 5x16 3x14 7x10 6x12 3x18 6x10 7x10

ICS-EV-No DPs 5x16 3x14 8x10 7x12 3x18 5x10 6x12

ICS-EV-25% DPs 4x16 3x14 8x10 7x12 3x18 5x10 6x12

ICS-HI-No DPs 8x9 6x6 8x10 9x7 11x7 4x8 8x6

ICS-HI-25% DPs 7x9 6x6 8x10 9x7 11x7 4x8 8x6

Table 3: Area (in terms of number of functional units) for mapping benchmarks onto

several fabric architectures.

 enc dec row col gsm sob lap

std-No DPs 272 224 180 240 324 100 120
std-25% DPs 256 210 130 180 270 90 104

std-33% DPs 256 196 156 192 288 100 112

std-50% DPs 160 140 132 216 198 80 130

IC-No DPs 192 182 120 156 198 80 104
IC-25% DPs 144 126 120 144 198 80 104

IC-33% DPs 176 140 120 132 162 80 104

IC-50% DPs 180 98 132 176 126 80 130

ICS-No DPs 144 56 90 108 90 70 80
ICS-25% DPs 112 56 80 96 54 60 80

ICS-33% DPs 96 56 80 84 54 60 80

ICS-50% DPs 80 42 70 72 54 60 70

ICS-EV-No DPs 80 42 80 84 54 50 72
ICS-EV-25% DPs 64 42 80 84 54 50 72

ICS-HI-No DPs 72 36 63 77 32 42 48
ICS-HI-25% DPs 63 36 63 77 32 42 48

standard architectures as shown in Table 4, 5, 6 and 7. For example, the benchmarks implemented

on standard architecture with no DPs used 20x18 size fabric whereas the same set of benchmarks

can now be implemented on 9x18 fabric with ICS.

Table 4: Minimum Fabric size (Width x Height) for combination of IC and DP.
Architecture Fabric size(std) Fabric size(IC) % Savings

No DPs 20x18 13x18 35

25% DPs 16x18 13x18 19

33% DPs 16x18 13x18 19

50% DPs 13x18 13x18 0

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

85

Table 5: Minimum Fabric size (Width x Height) for ICS with DP.
Architecture Fabric size(std) Fabric size(ICS) % Savings

No DPs 20x18 9x18 55

25% DPs 16x18 8x18 50

33% DPs 16x18 8x18 50

50% DPs 13x18 7x18 46

Table 6: Minimum Fabric size (Width x Height) for ICS-EV.
Architecture Fabric size (std) Fabric size (ICS-EV) % Savings

No DPs 20x18 8x18 55

25% DPs 16x18 8x18 50

Table 7: Minimum Fabric size (Width x Height) for ICS-HI.
Architecture Fabric size (std) Fabric size (ICS-HI) % Savings

No DPs 20x18 11x9 73

25% DPs 16x18 11x9 66

Table 8 shows the percentage savings in terms of number of functional units per benchmark

mapped onto standard, IC, ICS, and hybrid architectures. We computed the number of functional

units required to map each benchmark for a particular architecture. We then compared every

architectural option with our reference baseline architecture to obtain savings. The IC architecture

requires 27% fewer functional units compared to the baseline. The ICS architecture provides

savings of 52% in terms of functional units compared to the standard architecture. The ICS-EV

architecture requires 62% fewer functional units than the baseline architecture. The combination

of ICS and 50% DPs needs 64% fewer functional units as compared to the baseline.

Table 8: Percentage area savings in terms of number of functional units per benchmark

mapped onto standard, DP, ICS and hybrid architectures.

 enc dec row col gsm sob lap average

std-No DPs - - - - - - - -
std-25% DPs 6 6 28 25 17 10 13 15

std-33% DPs 6 13 13 20 11 0 7 10

std-50% DPs 41 38 27 10 39 20 -8 24

IC-No DPs 29 19 33 35 39 20 13 27
IC-25% DPs 47 44 33 40 39 20 13 34

IC-33% DPs 35 38 33 45 50 20 13 33

IC-50% DPs 47 56 27 27 61 20 -8 31

ICS-No DPs 47 75 50 55 72 30 33 52
ICS-25% DPs 59 75 56 60 83 40 33 58

ICS-33% DPs 65 75 56 65 83 40 33 60

ICS-50% DPs 71 81 61 70 83 40 42 64

ICS-EV-No DPs 71 81 56 65 83 50 40 64
ICS-EV-25% DPs 76 81 56 65 83 50 40 65

ICS-HI-No DPs 74 84 65 68 90 58 60 71
ICS-HI-25% DPs 77 84 65 68 90 58 60 72

Table 9: Number of ALUs used as pass gates in standard (std), integrated constants (IC),

inputs coming from the side (ICS) and combination of DPs with std, IC, and ICS architectures

 enc dec row col gsm sob lap
std-No DPs 126 71 41 72 139 19 17
std-25% DPs 65 23 14 26 69 5 2

std-33% DPs 40 19 15 15 46 2 1

std-50% DPs 21 5 10 8 25 3 2

IC-No DPs 67 40 18 28 67 8 4
IC-25% DPs 34 15 6 14 20 3 2

IC-33% DPs 20 6 6 5 9 1 0

IC-50% DPs 26 9 9 8 13 0 1

ICS-No DPs 21 12 4 4 9 5 5
ICS-25% DPs 6 3 0 0 0 0 0

ICS-33% DPs 2 0 0 0 0 0 0

ICS-50% DPs 0 0 0 0 0 0 0

ICS-EV-No DPs 3 1 1 1 0 0 2
ICS-EV-25% DPs 0 0 0 0 0 0 0

ICS-HI-No DPs 5 0 3 3 0 3 0
ICS-HI-25% DPs 0 0 0 0 0 0 0

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

86

Using the parameterized fabric model described in Section 3, we generated various instances of

fabric architectures. We synthesized the fabric VHDL into Synopsys cell-based ASIC design with

a feature size of 90 nm using Synopsys Design Compiler. Figure 14 shows the area consumption

of standard, dedicated pass gates, ICS, and hybrid architectures having both ICS and DPs. The

hybrid architecture with ICS and 50% DPs consumes least area. This architecture provides 61%

area savings compared to the standard architecture with no DPs.

Figure 14: Area consumption for various fabric architectures implemented on Synopsys 90nm

ASIC process.

We also examined the utilization of ALUs for pass operation for various fabric architecture

implementations. In Table 9, we compare std, IC, ICS, ICS-EV, and a combination of DPs with

these techniques. The number of ALUs used as pass gates has been reduced significantly when

we compare the architectures having a combination of ICS and DPs with the baseline

architectures. Consider the case of ”gsm”, when we mapped this benchmark onto the standard

fabric with no dedicated pass gates, 139 out of 360 ALUs were being used for pass operation.

When we added 33% dedicated pass gates to the architecture, the number of ALUs being used as

pass gates was reduced to 46. When we introduced ICS also in the fabric, ALUs are no longer

required for passing values down in the fabric. Even in the hybrid architecture with IC and ICS

and extended vertical interconnect, only 2 functional units are used for passing information.

We also conducted energy simulations on the architectures discussed in this paper. The energy

results are shown in Figure 15. For each architecture, we compute energy for all the benchmarks

examined and then compute average consumption over all the benchmarks. The combination of

ICS and DPs consume least energy consumption. The hybrid-EV architecture also shows similar

average energy consumption as ICS and DPs combination. This architecture does not use any

dedicated pass gates to pass information from producer to the consumer. Instead it has extended

vertical interconnect that increase the reachability of the functional units. The energy savings

results for different fabric instances are shown in Table 10. Energy was calculated by computing

the product of the power and delay of the design. To calculate the power and delay of the design,

the fabric VHDL is synthesized into Synopsys cell-based ASIC design with a feature size of 90

nm using Synopsys Design Compiler. The post-synthesis design was simulated in Mentor

Graphics ModelSim to calculate the delay of each design and these simulations were used as

stimulus to the Synopsys PrimeTime-PX tool to estimate the power consumption of the device.

The fabric with IC provides energy savings of 13% as compared to the standard fabric. With

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

87

ICS, we achieved energy savings of 27% as compared to the baseline architecture. By having a

combination of DPs and ICS, we achieved energy savings upto 32% as compared to the baseline

architecture averaged over all benchmarks. ICS-EV fabric provides energy savings of 27%.

Table 10: Energy savings (%) per benchmark mapped onto standard, DP, ICS and hybrid

architectures.

 enc dec row col gsm sob lap average

std-No DPs - - - - - - - -
std-25% DPs 21 28 4 6 20 7 13 14

std-33% DPs 30 29 5 9 27 9 13 18

std-50% DPs 37 38 3 6 30 8 9 19

IC-No DPs 24 18 3 7 26 5 10 13
IC-25% DPs 39 35 6 10 46 8 12 22

IC-33% DPs 44 40 6 12 50 10 17 26

IC-50% DPs 32 39 1 7 49 10 9 21

ICS-No DPs 54 45 7 12 58 6 6 27
ICS-25% DPs 60 52 8 15 62 10 9 31

ICS-33% DPs 63 54 7 15 62 10 11 32

ICS-50% DPs 63 54 7 13 62 10 6 31

ICS-EV-No DPs 64 53 6 13 61 10 4 30
ICS-EV-25% DPs 65 53 6 13 61 10 7 31

ICS-HI-No DPs 62 57 6 13 62 10 8 31
ICS-HI-25% DPs 63 57 6 13 62 10 8 31

Table 11: Percentage area savings per benchmark mapped onto standard, DP, ICS and

hybrid architectures.

 enc dec row col gsm sob lap average

std-No DPs - - - - - - - -
std-25% DPs 4 4 26 23 15 8 12 13

std-33% DPs 3 10 11 18 8 -2 4 7

std-50% DPs 38 34 23 4 35 16 -14 19

IC-No DPs 25 13 29 31 35 15 8 22
IC-25% DPs 43 39 28 35 34 13 6 28

IC-33% DPs 29 31 27 40 45 13 5 27

IC-50% DPs 26 51 18 18 56 11 -21 23

ICS-No DPs 46 75 49 54 72 29 32 51
ICS-25% DPs 58 74 54 59 83 39 31 57

ICS-33% DPs 63 74 54 64 83 38 31 58

ICS-50% DPs 69 80 59 68 82 36 38 62

ICS-EV-No DPs 70 81 55 64 83 49 39 63
ICS-EV-25% DPs 76 81 54 64 83 49 38 63

ICS-HI-No DPs 73 83 64 67 90 57 59 70
ICS-HI-25% DPs 76 83 64 67 90 56 58 71

4.1. Energy vs Area Tradeoffs

This section presents energy vs area tradeoffs for the suite of benchmarks for standard, IC, ICS,

and hybrid architectures. Table 10 shows the energy savings per benchmark for various fabric

implementations. Our baseline architecture is “std-No DPs”. We compare all architectural options

with our reference baseline architecture to obtain savings. On an average, the architecture with

integrated constants provides 13% energy savings, the ICS and ICS-EV architectures pro- vide

27% energy savings compared to the baseline. The combination of DPs and ICS can provide upto

32% energy savings over the baseline architecture.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

88

Figure 15: Energy comparison of standard, IC, ICS, ICS-EV, and hybrid architectures.

Table 11 shows the percentage area savings. IC fabric provides 22% area savings as compared to

the standard implementation. The ICS and ICS-EV architectures achieve 51% and 60% area

savings respectively. The combination of ICS and DPs provides upto 62% energy savings when

compared with baseline.

Figure 16 shows the energy and area savings for various fabric architecture implementations for a

suite of signal and image processing applications exam- ined here. For each architecture, we

show the energy and area savings that we achieve over the baseline architecture averaged over all

the benchmarks. The ICS option achieves more energy and area savings as compared to the IC

architecture. When ICS is combined with DPs, the level of energy and area improvements get

even higher. The same level of area and energy savings can also be achieved using ICS-EV style.

Figure 16: Area and energy savings for various fabric architectures compared to the baseline.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

89

5. CONCLUSIONS

In this paper, we discussed various styles of routing constants and variable inputs in a stripe-

based coarse grained reconfigurable fabric including (i) integrated constants (IC) approach

where constants are loaded in the registers local to the functional units; (ii) inputs coming from

the side (ICS) where both constants and variable inputs can be routed to the stripe directly where

needed; (iii) ICS with extended vertical interconnect (ICS-EV); and (iv) a combination of

dedicated pass gates (DPs) with standard, IC, ICS, and ICS-EV architecture styles. We

implemented these architecture styles using 90 nm ASIC process from Synopsys. We performed a

detailed area and energy analysis on these architectures using signal processing benchmarks from

Mediabench benchmark suite and some of the image processing applications. We observed that

the fabric with ICS and 50% DPs is the best among these options, providing 31% energy savings

and 62% area savings over a baseline architecture for our benchmark set.

REFERENCES

[1] Cao Liang, Xinming Huang, Mapping Parallel FFT Algorithm onto Smart- Cell Coarse-Grained

Reconfigurable Architecture, Application-specific Systems, Architectures and Processors, 2009.

ASAP 2009. 20th IEEE In- ternational Conference on , pp.231-234, (2009)

[2] Yoonjin Kim, Mahapatra R.N., A New Array Fabric for Coarse-Grained Reconfigurable

Architecture, Digital System Design Architectures, Methods and Tools (DSD ’08), 11th

EUROMICRO Conference on , pp.584-591, (2008)

[3] Mirsky E., DeHon A., MATRIX: a reconfigurable computing architecture with configurable

instruction distribution and deployable resources, FPGAs for Custom Computing Machines (1996).

Proceedings. IEEE Symposium on, pp.157-166, 17-19 (1996)

[4] B. Levine, HASTE: Hybrid Architectures with a Single Transformable Executable, Ph.D. dissertation,

Department of ECE, CMU., (2005)

[5] Gayatri Mehta, Hoare R.R., Stander J., Jones A.K., A Low-Energy Re- configurable Fabric for the

SuperCISC Architecture, 14th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM ’06) , pp.309-310 (2006)

[6] Singh H., Ming-Hau Lee, Guangming Lu, Kurdahi F.J., Bagherzadeh N., Chaves Filho E.M. ,

MorphoSys: an integrated reconfigurable system for data-parallel and computation-intensive

applications, Computers, IEEE Transactions on , vol.49, no.5, pp.465-481, (2000)

[7] Ebeling Carl, Cronquist Darren C., Franklin Paul , RaPiD - Reconfigurable Pipelined Datapath, In:

Proceedings of the 6th International Workshop on Field-Programmable Logic, Smart Applications,

New Paradigms and Com- pilers, pp. 126–135 (1996)

[8] Gayatri Mehta, Alex K. Jones, Justin Stander, Mustafa Baz, Brady Hunsaker, Interconnect

Customization for a Hardware Fabric, In: ACM Transactions on Design Automation for Electronic

Systems (TODAES), vol 14, pp 11:1–11:32 (2009)

[9] Mehta, G., Ihrig, C.J., Jones A.K., Reducing energy by exploring heterogeneity in a coarse-grain

fabric,In: Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on ,

pp.1-8, 14-18 (2008)

[10] Aggarwal A.A., Lewis D.M., Routing architectures for hierarchical field programmable gate arrays,

In: Computer Design: VLSI in Computers and Processors (ICCD ’94). Proceedings., IEEE

International Conference on , pp.475-478, (1994)

[11] Kaviani A., Vranesic D., Brown, S. , Computational field programmable architecture, In: Custom

Integrated Circuits Conference, 1998. Proceedings of the IEEE 1998 , pp.261-264, (1998)

[12] Heysters P.M., Smit G.J.M. , Mapping of DSP algorithms on the MON- TIUM architecture, In:

Parallel and Distributed Processing Symposium, 2003. Proceedings. International pp. 6 , (2003)

[13] Schmit H., Whelihan D., Tsai A., Moe M., Levine B., Reed Taylor R. PipeRench: A virtualized

programmable datapath in 0.18 micron technology, In: Custom Integrated Circuits Conference,

Proceedings of the IEEE (2002), pp. 63- 66, (2002)

[14] Schmit H., Whelihan D., Tsai A., Moe M., Levine B., Reed Taylor R. , PipeRench: A virtualized

programmable datapath in 0.18 micron technology, In: Custom Integrated Circuits Conference, 2002.

Proceedings of the IEEE (2002), pp. 63- 66, (2002)

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

90

[15] Ebeling C., Cronquist D.C., Franklin P., Secosky J., Berg, S.G. , Mapping applications to the RaPiD

configurable architecture, In: FPGAs for Custom Computing Machines (1997) Proceedings., The 5th

Annual IEEE Symposium on ,pp. 106-115, (1997)

[16] B. Levine, H. Schmit, Implementation of Target Recognition Applications using Pipelined

Reconfigurable Hardware In: Proceedings of Military and Aerospace Applications of Programmable

Devices and Technologies Interna- tional Conference, (2003)

[17] P.M. Heysters, Coarse-Grained Reconfigurable Computing for Power Aware Applications, In: Proc.

ERSA, pp.272-272 (2006)

[18] Frank Bouwens, Mladen Berekovic, Andreas Kanstein, Georgi Gaydadjiev, G.: Architectural

Exploration of the ADRES Coarse-Grained Reconfigurable Array, In: ARC 2007. LNCS pp. 1–13

(2007)

[19] Cao Liang, Xinming Huang, SmartCell: An Energy Efficient Coarse- Grained Reconfigurable

Architecture for Stream-Based Applications, EURASIP Journal on Embedded Systems, vol. 2009,

Article ID 518659, 15 pages, (2009)

[20] Alex K. Jones, Raymond Hoare, Dara Kusic, Joshua Fazekas, and John Foster, An FPGA-based

VLIW processor with custom hardware execution. Proceedings of the 2005 ACM/SIGDA 13th

international symposium on Field-programmable gate arrays (FPGA ’05), pp. 107–117, (2005)

[21] PACT-XPP, XPP-lib Core Overview, http://www.pactcorp.com/

[22] Van Essen B., Panda R., Wood A., Ebeling C., Hauck, S. , Managing Short-Lived and Long-Lived

Values in Coarse-Grained Reconfigurable Arrays, Field Programmable Logic and Applications (FPL),

2010 International Conference on , pp.380-387, (2010)

[23] Hauser J.R., Wawrzynek J., , Garp: a MIPS processor with a reconfigurable coprocessor, In: FPGAs

for Custom Computing Machines, (1997), The 5th Annual IEEE Symposium on , pp.12-21, 16-18

(1997)

[24] H. Singh , Morphosys: An Integrated Re-configurable Architecture, the NATO RTO Symposium on

System Concepts and Integration (1998)

[25] Gayatri Mehta, and Raymond R. Hoare, Justin Stander and Alex K. Jones, Design Space Exploration

for Low-Power Reconfigurable Fabrics, In: Proceedings of IPDPS (2006).

[26] G. Lu, M. Lee, H. Singh, N. Bagherzadeh, F.J. Kurdahi, E.M.C. Filho, MorphoSys: A

Reconfigurable Processor Trageted to High Performance Image Application, IPPS/SPDP Workshops,

pp.661-669 (1999)

[27] C. Brunelli, F. Garzia, D. Rossi, and J. Nurmi, A coarse-grain reconfigurable architecture for

multimedia applications supporting subword and floating-point calculations, Journal of Systems

Architecture - Embedded Systems Design, pp.38-47, (2010)

[28] S. Hauck, T. W. Fry, M. M. Hosler, J. P. Kao, The Chimaera Reconfigurable Functional Unit, IEEE

Symposium on FPGAs for Custom Computing Machines, pp. 87-96, (1997)

[29] M. Petrov, T. Murgan, F. May, M. Vorbach, P. Zipf, and M. Glesner, ”The XPP Architecture and Its

Co-simulation Within the Simulink Environment”, in Proc. FPL, pp.761-770, (2004).

International Journal of VLSI design & Communication Systems (VLSICS) Vol.4, No.1, February 2013

91

Authors

Anil Yadav: Anil Yadav is currently working in John Deere. He received his M.S. in

Electrical Engineering at the University of North Texas, Denton, TX. He received his

B.E. in Electronics and Communications from Rajiv Gandhi Technical University,

Bhopal, India in 2005. His interests are in low-power and area-efficient reconfigurable

architectures.

Justin Stander: Justin Stander is currently working in General Dynamics C4 systems,

Pittsburgh, PA. He received his M.S. and B.S. in computer engineering from the

University of Pittsburgh in 2007 and 2005 respectively. His interests are in compilation

and computer aided design for low-power reconfigurable computing fabrics.

Alex K. Jones: Alex K. Jones is currently an Associate Professor of Electrical and

Computer Engineering at the University of Pittsburgh, PA. He received his Ph. D. and

M.S. degrees in 2002 and 2000, respectively, in electrical and computer engineering at

Northwestern University. He received his B.S. in 1998 in physics from the College of

William and Mary in Williamsburg, Virginia. His research interests include

compilation techniques for behavioral and low-power synthesis, embedded systems,

radio frequency identification (RFID), and high-performance computing.

Gayatri Mehta: Gayatri Mehta is currently as an Assistant Professor in the department

of Electrical Engineering at the University of North Texas, Denton, TX. She received

her Ph.D. in Electrical and Computer Engineering, M.S. in Telecommunications from

the University of Pittsburgh in 2009 and 2003 respectively, M.Tech in

Microelectronics from Panjab University, India in 2001, and B.Tech in Electronics and

Communication from the National Institute of Technology, India in 1999. She is a

recipient of Junior Faculty Summer Research Fellowship at the University of North

Texas in 2010. She is an IEEE member. Her research interests are broadly in the areas

of Reconfigurable Computing, Low-Power VLSI Design, System on a Chip Design, Electronic Design

Automation, Embedded Computing, Wearable Computing, and Energy Harvesting.

