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ABSTRACT 

Coarse-grained reconfigurable fabrics (CGRF’s) have great promise for achieving low-energy flexible 

designs for an application domain. However a universally accepted architecture for coarse-grained 

reconfigurable fabrics has not yet crystallized, and many architectural options are still  un- der 

consideration by the research and industry  community.  One scientific question is how to efficiently route 

inputs through a CGRF. This paper addresses this question in part by exploring various alternative input 

solu- tions for a stripe-based fabric.  Alternative architectural  styles examined in this paper include (i)  

integrated constants (IC)  approach where constants are loaded in the registers local to the functional 

units; (ii)  inputs coming from the side (ICS) where both constants and variable inputs can be routed to the 

stripe  directly  where needed; (iii)  ICS with  extended vertical interconnect (ICS-EV);  and (iv)  a 

combination of dedicated pass gates (DPs) with standard, IC, ICS, and ICS-EV architecture styles. We 

implemented these architecture styles using 90 nm ASIC process  from Synopsys. We perform a detailed 

area and energy analysis on these architectures and present quantitative results in this paper. We observed 

that the fabric with ICS and 50% DPs is the best among these options, providing 31% energy savings and 

62% area savings over a baseline architecture for our benchmark set. 
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1. INTRODUCTION 

Reconfigurable devices mitigate many of the problems encountered with the development of 

Application Specific Integrated Circuits (ASICs) for hardware acceleration. For example, 

reconfigurable devices amortize the rapidly increasing mask and non-recurring engineering 

(NRE) costs over many more generic devices. Computer Aided Design (CAD) flows are often 

simplified for these de- vices. Thus, the design cycle is much reduced, which can significantly 

decrease the time to market. 

The tradeoff for using these reconfigurable devices is a compromise in performance and most 

notably power/energy consumption. To reduce the energy consumption of a reconfigurable 

device, particular care must be given to designing both functional units and interconnect of the 

device. 

Stripe-based fabrics in particular (e.g., see Figure 2) are quite promising due to their good fit to a 

data flow graph structure [5, 25, 8, 9]. When a data flow graph is mapped to a stripe-style 

structure, however, data dependency edges often traverse multiple rows. Mapping of a data flow 

graph onto a reconfigurable fabric is described in detail in Section 3.1.  In these fabrics, 
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arithmetic and logic units (ALUs) must often pass these values through without doing any 

computation.  In other words, the 

of the signal and image processing applications, for example, that more than 50% of the 

functional units in the fabric were used for routing by configuring the ALU as a pass

shown in Figure 1 [8]. 

 

Figure 1: Comparison of ALUs used for routing and computation

However, these ALUs used as passgates are an area

vertical routing. One alternative that has been studied is to use a simple routing struct

could only pass a value, i.e., a dedicated pass

order of magnitude more power than such a direct vertical route implementation. Previous 

research has found, for example, that an architecture that a

provides 19% energy savings and 30% area savings [8].

There are a variety of possible ways to route inputs in the coarse

which approach is better because additional hardware must be 

understand how well it is utilized.  To better understand the tradeoffs, we present a quantitative 

study of different architectures described briefly as follows. In this paper, we study (i) integrated 

constants (IC) approach where constants are loaded in the registers local to the functional units; 

(ii)  inputs coming from the side (ICS) where both constants and variable inputs can be routed to 

the stripe  directly  where needed; (iii) ICS with extended vertical interconnect (IC

a combination of dedicated pass gates (DPs) with standard, IC, ICS, and ICS

styles. In the standard implementation, inputs are routed from the top of the fabric and functional 

units are used for passing information.  This l

functional units that  could have been used for actual computations are being used for pass 

operation. Since there are many inputs that stay constant during the execution cycle, they can be 

loaded to the registers local to the functional units. This approach will use additional registers for 

loading constants but can save some functional units for being used only for passing information.   

It provides 22% area savings and 13% energy savings on an average 

architecture, we introduce small multiplexers to the inputs of each functional unit to provide 

flexibility to read inputs from the top row or directly from outside the fabric. We find that the use 

of such multiplexers allows substantial area savings through allowing smaller fabrics to carry the 

same benchmark suites. The small additional power and energy cost of the additional hardware is 

recovered easily through the fact that  the overall fabric is smaller and fewer functional

used as pass gates. This approach achieves 51% area 
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arithmetic and logic units (ALUs) must often pass these values through without doing any 

the ALU’s function merely as pass-gates.  It was observed for some 

of the signal and image processing applications, for example, that more than 50% of the 

functional units in the fabric were used for routing by configuring the ALU as a pass

Figure 1: Comparison of ALUs used for routing and computation 

However, these ALUs used as passgates are an area-inefficient and power- inefficient method for 

vertical routing. One alternative that has been studied is to use a simple routing struct

could only pass a value, i.e., a dedicated pass-gate. Using an ALU as a passgate requires over an 

order of magnitude more power than such a direct vertical route implementation. Previous 

research has found, for example, that an architecture that adds 50% DPs to an existing fabric 

provides 19% energy savings and 30% area savings [8]. 

There are a variety of possible ways to route inputs in the coarse-grained fabrics. It is not obvious 

which approach is better because additional hardware must be configured for some, we must 

understand how well it is utilized.  To better understand the tradeoffs, we present a quantitative 

architectures described briefly as follows. In this paper, we study (i) integrated 

ere constants are loaded in the registers local to the functional units; 

(ii)  inputs coming from the side (ICS) where both constants and variable inputs can be routed to 

the stripe  directly  where needed; (iii) ICS with extended vertical interconnect (ICS-

a combination of dedicated pass gates (DPs) with standard, IC, ICS, and ICS-EV architecture 

styles. In the standard implementation, inputs are routed from the top of the fabric and functional 

units are used for passing information.  This leads to the inefficient resource utilization because 

functional units that  could have been used for actual computations are being used for pass 

operation. Since there are many inputs that stay constant during the execution cycle, they can be 

registers local to the functional units. This approach will use additional registers for 

loading constants but can save some functional units for being used only for passing information.   

It provides 22% area savings and 13% energy savings on an average over the baseline. In the ICS 

architecture, we introduce small multiplexers to the inputs of each functional unit to provide 

flexibility to read inputs from the top row or directly from outside the fabric. We find that the use 

ubstantial area savings through allowing smaller fabrics to carry the 

same benchmark suites. The small additional power and energy cost of the additional hardware is 

recovered easily through the fact that  the overall fabric is smaller and fewer functional

used as pass gates. This approach achieves 51% area savings and 27% energy savings over the 
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baseline. We extended the ICS approach by introducing multi-level vertical interconnect in the 

fabric. Now the functional unit can not only reach the functional units in the row above but can 

also reach the functional units in the grand-parent and great-grand parent rows in the same 

column. We use bigger multiplexers as compared to the ICS approach to provide that reachability 

but now we can implement the same benchmarks on even smaller fabrics. It provides 60% area 

savings and 27% energy savings over the baseline. In addition to these, we also studied the 

combination of adding dedicated vertical routes to the standard, IC, ICS, and ICS-EV techniques. 

Adding dedicated pass gates to these architectural options further increase the area and energy 

savings. 

While our technique applies to stripe-based reconfigurable fabrics in general such as PipeRench 

([13, 14]) and Kilocore ([4]), and conceptually to the larger class of coarse-grained reconfigurable 

fabrics, our technique is demonstrated using the low-energy domain specific fabric (DSF) target 

([5]) shown in Figure 2. 

The remainder of this paper is organized  as follows: Section 2 provides some background 

material in the area of reconfigurable computing and coarse-grain architectures in general. An 

overview of the fabric target used in this paper to demonstrate the impact of the inputs coming 

from the side is presented in Section3. Section 4 includes results and an analysis of energy 

consumption for a suite of benchmark circuits. Section 5 discusses conclusions. 

 

2. BACKGROUND AND LITERATURE REVIEW 

A tremendous amount of effort has been devoted to the area of reconfigurable computing for 

application acceleration with custom hardware. While FPGAs are the most commonly used 

general purpose reconfigurable devices, they exhibit poor power characteristics. 

Recently, the development and use of coarse-grained fabrics for computation- ally complex tasks 

has received a lot of attention as a possible alternative to FP- GAs. Many architectures have been 

proposed and developed both in academia and industry during the last two decades such as 

MATRIX ([3]), Garp ([23]), MorphoSys ([24], [26], [6]), RaPiD ([7], [15]), PipeRench ([13], 

[14], [16]), HF- PGA ([10]), Kilocore ([4]), Pact XPP ([29]), CFPA ([11]), Montium ([12],[17]), 

ADRES ([18]), SmartCell ([19], [1]), and the coarse-grained architectures devel- oped by 

[2],[27]. 

MATRIX (Multiple ALU architecture with Reconfigurable Interconnect eX- periment) [3] is 

comprised of a two-dimensional array of identical 8-bit functional units with a configurable 

network. Each functional unit consists of a 256x8-bit memory, an 8-bit ALU and a control logic. 

The Garp [23], the Chimaera [28], the MorphoSys [24], and the SuperCISC [20] architectures 

combine a reconfigurable computing device with a processor in order to do hardware 

acceleration.  RaPiD (Reconfigurable Pipelined Datapath) [7, 15], mainly intended for 

computation- intensive applications, consists of a linear array of application-specific functional 

units.  PipeRench [13, 14], Kilocore ([4]) have a striped configuration and is comprised of an 

interconnected network of configurable logic blocks and storage elements. It consists of a set of 

physical pipeline stages called stripes and each stripe contains a set of processing elements, 

register files, and an interconnec- tion network.  The CFPA (Computational Field Programmable 

Architecture) [11] consists of Partial  Add,  Subtract, and Multiply (PASM)  blocks for im- 

plementing data path operations of computational intensive applications. The PASM block 

operates on 4-bit operands and can be connected together to im- plement adders, subtracters, and 

multipliers of various sizes. The HFPGA (Hi- erarchical Field Programmable Gate Array)  [10] 

allows the creation of coarse grain blocks built  from traditional  4-input lookup tables. These 

coarse grain blocks have dedicated routing channels. ADRES ([18]) implemented and eval- uated 

several inter-connection topologies that includes simple mesh and more complex schemes, where 

one functional unit can transmit data to non-adjacent functional units in the same row or non-
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adjacent functional units in the same column.  Pact XPP Technologies [21] propos

architecture, which has a hierarchical array of coarse

Processing Array Elements (PAEs) and a packet

core is comprised of a rectangular array of ALU

reconfigurable fabric architectures have sequential structure and use local registers or shared 

register files for storing data values. Of these, PipeRench and Kilocore are stripe

grain fabrics. These fabrics used pas

from one stripe to the other. [22] describes how to manage short

coarse-grained fabrics. They discuss various architectural options for storing values when 

optimizing for area and energy. They consider constants as long

register files. In this paper, we present a detailed energy and area analysis of various architectural 

techniques including integrated constants, inputs coming form th

approach with extended vertical interconnect and the combination of dedicated pass gates with 

standard, IC and ICS. Dedicated pass gates are also incorporated to reduce the usage of functional 

units as pass gates to pass co

(consumer) (especially when the consumer is separated by multiple stripes from the producer).

In our previous research, we studied the impact of varying different design parameters such as the 

width of the functional units, homogeneous vs. heterogeneous functional units, various functional 

unit implementation techniques, granularity of the interconnect, interconnect patterns,

horizontal and vertical  routing  onto physical characteristics like  

[5, 25, 8, 9].  We attempted to minimize the cardinality of the

operations supported by each ALU, and maximize the use of dedicated pass gates in the fabri

We observed that even with all of the

remain and results appear to be area

approaches in this paper. To our knowledge, no one has yet presented a sys

of input  routing alternatives  as considered in this paper.

 

3. DOMAIN SPECIFIC FABRIC

Stripe-based hardware fabrics are

application onto the device. We

architecture shown in Figure 2, although a similar approach could be used for other stripe

architectures. 

Figure 2: The fabric model is comprised of ALUs and a reconfigurable interconnect

For our examples, ALUs are organized

functional unit operates independently. The results of these ALU operations are then fed into 

interconnection stripes constructed using multiplexers.
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remain and results appear to be area-inefficient, which motivates the idea of exploring alternative 
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Figure 2: The fabric model is comprised of ALUs and a reconfigurable interconnect

 

For our examples, ALUs are organized into rows or computational stripes within which each 

functional unit operates independently. The results of these ALU operations are then fed into 
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The fabric model was implemented in parameterized VHDL using the generic capability of the 

VHDL language. The fabric size is determined with the parameters specifying the width of the 

fabric W and height of the fabric H .  W dictates the number of ALUs in each computational 

stripe. H determines the number of computational and interconnection stripes in the fabric model 

shown in Figure 2.  The fabric architecture also has several early exit rows, spaced evenly in the 

device. For example, for a fabric with height 18, every alternate row is connected to the exit row. 

As soon as the output is computed, it can be sent to the nearest exit row which is connected to the 

final output of the device. If the output is available in row 9, it will go the nearest exit row 10 and 

then go the final output of the device. This saves a significant number of functional units in the 

successive rows being used to pass outputs down the rows.  

 

3.1. Mapping of applications onto domain-specific reconfigurable fabric 

A mapping of a data flow graph (DFG) onto a reconfigurable fabric consists of an assignment of 

operators in the DFG to ALUs in the reconfigurable fabric such that the logical structure of the 

DFG is preserved and the architectural constraints of the fabric are followed. This mapping 

problem is very critical to the use of the fabric because a mapping solution must be available each 

time the fabric is reprogrammed for a specific DFG. Because of the layered nature of the fabric, 

the mapping is also allowed to use ALUs as pass-gates, which take a single input  and pass the 

input  value to one or more outputs.  In general, not all of the available ALUs and edges will be 

used. An example DFG and a corresponding mapping are shown in Figure 3 and Figure 4. The 

DFG from Figure 3 is implemented on a baseline architecture where inputs and constants are 

routed from the top of the fabric.  ALUs used as operators are shown in white colored squares 

with operators marked in them, ALUs used as pass gates are shown in blue color and labeled as 

“P”. The inputs and outputs are shown in white colored ovals. Consider an ALU in row 11 and 

column 10 i.e. ALU (11,10), shown in yellow color, one of its inputs is a constant and is being 

routed all the way from the top of the fabric. It uses 10 ALUs for just passing this input to the 

desired location.  Obviously, routing alternatives  for passing input  values are needed. 

This DFG has two outputs, one of which is computed and available very early in the fabric (in 

row 4).  Because of early exit rows in the fabric, this output can come out directly to the final 

output without using any ALUs in the successive stripes for the pass operation. 

3.2. Architectural exploration case studies 

In order to conduct architectural exploration case studies,  we selected a set of core signal 

processing benchmarks  from MediaBench benchmark suite includ- ing the ADPCM encoder 

(enc), ADPCM decoder (dec), GSM channel encoder (gsm), and the MPEG II decoder  (row, 

col).  We added the Sobel (sob) and Laplace (lap) edge detection algorithms to the benchmark 

suite. We computed the number of operations and number of constants in each benchmark. Table 

1 shows the number of operations and the number of constants contained in the benchmark suite.  

Operations include only regular arithmetic, logic and shift operations such as addition, 

multiplication, AND, OR, right-shift, etc. It also shows the number of pass gates required to pass 

inputs and constants to the functional units where they are needed in the baseline architecture. As 

it can seen that a large of functional units are being wasted for routing inputs and constants. For 

example, in “enc”, 105 pass gates are used to route only 3 inputs and 14 constants. 
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Figure 3: An example of a data flow graph (DFG). 

 

3.3. Fabric architecture with dedicated pass gates (DP) 

In order to reduce power consumption due to large numbers of ALUs being used as pass gates, 

the use of dedicated pass gates, which simply route data vertically from one row to the next have 

been explored ([8]).  The dedicated pass gate can also be set to idle state when not being used. 

Figure 5 shows the data flow graph (DFG) from Figure 3 mapped onto the architecture with 33% 

DPs (1 out of 3). ALUs used as operators are shown in white colored squares with operators 

marked in them, ALUs used as pass gates are shown in blue color and labeled as “P”, the 

dedicated pass gates are shown in green color and are labeled as “DP”, and the white empty 

squares are idle.  Our goal here is to minimize the usage of ALUs for pass operations. As it can be 

seen that the number of ALUs used as pass gates shown in blue color have been reduced from the 

baseline architecture but there are still many ALUs which are being used for pass operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Example mapping of the DFG in Figure 3 onto a stripe-based coarse-grained fabric. 
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Table 1: Number of operations, constants, inputs, pass gates in DFGs of the benchmarks 

  
 

 enc dec row col gsm sob lap 

Operations 36 29 52 61 29 24 29 
Constants 14 20 23 32 20 10 5 
Inputs 3 4 8 8 3 8 25 
Pass gates 105 31 23 36 84 11 13 

 
 

3.4. Fabric architecture with integrated constants (IC) 

To implement the Integrated Constants (IC) architecture, we used a register to store a constant 

and a 2:1 multiplexer for each operand of an ALU as shown in Figure 6. Each multiplexer can 

take inputs from the stripe above and from a register. The first stripe of ALUs in the fabric 

architecture takes variable inputs from the top and constant inputs from the registers; the ALUs in 

the rest of the stripes can get their operands either from the predecessor stripe or from the register. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: A DFG shown in Figure 3 mapped on the architecture with 33% DPs. 

Figure 7 shows the DFG shown in Figure 3 mapped onto the architecture where constants are 

routed directly to the functional units where needed using registers. In order to keep the figures 

simple, we show the constants integrated inside the ALUs and variables are in bubbles off to the 

sides. Constants are labeled within an ALU as “LC” and ”RC”.  ”LC” stands for a left constant 

and it means that the left operand of the ALU is a constant. ”RC” stands for a right constant and it 

means that the right operand of the ALU is a constant.  The same graph which used 16x14 

standard fabric is using only 13x14 fabric with IC. It requires 19% fewer functional units to 

implement the same DFG onto the fabric with IC than the standard implementation.  
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Figure 7: A DFG shown in Figure

 

3.5. Fabric architecture with

To implement the ICS architecture, we used a 2:1 multiplexer for each operand of an ALU as 

shown in Figure 8. Each multiplexer 

first stripe of ALUs in the fabric architecture takes all inputs from the top.  No multiplexers are 

needed for the first ALU stripe. The ALUs in the rest of the stripes can get their operands eit

from the predecessor stripe or from the side.  Each stripe has two busses,  one for the left operand 

and one for the right operand. Inputs are stacked in a single multi

bus, and required inputs are selected from this v

Figure 9 shows the DFG shown in Figure 3 mapped onto the architecture where inputs 

are routed directly to the functional units where needed. The same graph which used 16x14 

standard fabric is using only 4x14 fabric with ICS. It requires 75% fewer functional units to 

implement the same DFG onto the fabric with ICS than the base
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and one for the right operand. Inputs are stacked in a single multi-bit signal that is sent along the 

bus, and required inputs are selected from this value by the left or right multiplexer. 

Figure 9 shows the DFG shown in Figure 3 mapped onto the architecture where inputs 

are routed directly to the functional units where needed. The same graph which used 16x14 

standard fabric is using only 4x14 fabric with ICS. It requires 75% fewer functional units to 
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Figure 8: Fabric with Inputs Coming from Side (ICS).

Figure 9: A DFG shown in Figure 3 mapped on the architecture with ICS.

3.6. Fabric architecture with

To implement  this architecture, we used a 4:1 multiplexer for each operand of an ALU  as shown 

in Figure 10.  Each operand can come either from the stripe above, the grandparent stripe 

ALU(same column), the great grandparent stripe ALU(same column), or fr
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Figure 9: A DFG shown in Figure 3 mapped on the architecture with ICS.

 

Fabric architecture with ICS with extended vertical interconnect (ICS

To implement  this architecture, we used a 4:1 multiplexer for each operand of an ALU  as shown 

in Figure 10.  Each operand can come either from the stripe above, the grandparent stripe 
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Figure 9: A DFG shown in Figure 3 mapped on the architecture with ICS. 

ICS with extended vertical interconnect (ICS-EV) 

To implement  this architecture, we used a 4:1 multiplexer for each operand of an ALU  as shown 

in Figure 10.  Each operand can come either from the stripe above, the grandparent stripe 
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Figure 10: Fabric with IC and ICS with extended vertical interconnect (ICS

Figure 11: A DFG shown in Figure 3 mapped on the ICS

side and the 4:1 multiplexer provides this flexibility  and reachability.  The first stripe of ALUs in 

the fabric architecture takes variable inputs from the top and constant inputs from the registers. 

Each stripe has two busses, one for the left operand a

stacked in a single multi-bit signal that is sent along the bus, and required inputs are selected from 

this value by the left or right multiplexer. 

Figure 11 shows the DFG shown in Figure 3 mapped onto the architec

constants are routed directly to the functional units where needed. The same graph which used 

16x14 standard fabric is using only 3x14 fabric with hybrid approach. It requires 81% fewer 

functional units to implement the same DFG onto 
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Figure 11: A DFG shown in Figure 3 mapped on the ICS-EV architecture.

side and the 4:1 multiplexer provides this flexibility  and reachability.  The first stripe of ALUs in 

the fabric architecture takes variable inputs from the top and constant inputs from the registers. 

Each stripe has two busses, one for the left operand and one for the right operand. Inputs are 

bit signal that is sent along the bus, and required inputs are selected from 

this value by the left or right multiplexer.  

Figure 11 shows the DFG shown in Figure 3 mapped onto the architecture where inputs a

constants are routed directly to the functional units where needed. The same graph which used 

16x14 standard fabric is using only 3x14 fabric with hybrid approach. It requires 81% fewer 

functional units to implement the same DFG onto this new architecture compared to the baseline.
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3.7. Fabric architecture with

To implement this architecture, we used a 4:1 multiplexer for each operand of an ALU as shown 

in Figure 12. Each operand can come eith

right ALU(same row), or from the side and the 4:1 multiplexer provides this flexibility  and 

reachability. The first stripe of ALUs in the fabric architecture takes variable inputs and constants 

from the top and results from the neighbor ALUs. Each stripe has two busses, one for the left 

operand and one for the right operand. Inputs are stacked in a single multi

along the bus, and required inputs are selected from this value by t

Figure 13 shows the DFG shown in Figure 3 mapped onto the architecture where inputs and 

constants are routed directly to the functional units where needed. The same graph which used 

16x14 standard fabric is using only 6x6 

functional units to implement the same DFG onto this new architecture compared to the baseline.

Figure 12: Fabric with IC and ICS with horizontal interconnect (ICS

Figure 13: A DFG shown in Figure

 

4. RESULTS 

We performed detailed area and energy analysis on various architectural options including 

standard, IC, ICS, ICS-EV, and a combination of dedicated pass gates with these approaches. 
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Fabric architecture with ICS with horizontal interconnect (ICS-HI) 

To implement this architecture, we used a 4:1 multiplexer for each operand of an ALU as shown 

in Figure 12. Each operand can come either from the stripe above, the left ALU (same row), the 

right ALU(same row), or from the side and the 4:1 multiplexer provides this flexibility  and 

reachability. The first stripe of ALUs in the fabric architecture takes variable inputs and constants 

he top and results from the neighbor ALUs. Each stripe has two busses, one for the left 

operand and one for the right operand. Inputs are stacked in a single multi-bit signal that is sent 

along the bus, and required inputs are selected from this value by the left or right mulitplexer.

Figure 13 shows the DFG shown in Figure 3 mapped onto the architecture where inputs and 

constants are routed directly to the functional units where needed. The same graph which used 

16x14 standard fabric is using only 6x6 fabric with hybrid approach. It requires 84% fewer 

functional units to implement the same DFG onto this new architecture compared to the baseline.

 

Figure 12: Fabric with IC and ICS with horizontal interconnect (ICS-HI).

 

: A DFG shown in Figure 3 mapped on the ICS-HI architecture.

We performed detailed area and energy analysis on various architectural options including 

EV, and a combination of dedicated pass gates with these approaches. 
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EV, and a combination of dedicated pass gates with these approaches. 
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Table 2 provides a summary of the size requirements of the seven signal and image processing 

benchmarks mentioned in Section 3.2 mapped to various fabric architecture styles. The fabric size 

is given by Width x Height. When we compare the various architecture alternatives with the base- 

line, the benchmarks can fit in smaller width fabric. The benchmarks with more number of 

constants such as “enc”, “dec”, “col”, and “gsm” show large area improvements.  For example, 

“gsm” implemented on standard fabric with 33% DPs was using 16-wide fabric whereas the same 

benchmark when implemented on the fabric with ICS takes only 3-wide fabric. 

 

Once all benchmarks were mapped to a fabric using a particular architecture, the fabric size was 

fixed to the smallest size that could fit all seven benchmarks. The benchmarks can be mapped 

onto smaller size fabric for ICS architectures as compared to the  

 

Table 2: Fabric size (Width x Height) for mapping benchmarks onto various fabric architectures. 

 
enc  dec  row  col  gsm  sob  lap 

std-No DPs            17x16     16x14    18x10    20x12   18x18   10x10     15x8 

std-25% DPs          16x16    15x14    13x10   15x12   15x18    9x10        13x8  

std-33% DPs          16x16   14x14   13x12   16x12   16x18   10x10        14x8  

std-50% DPs          10x16   10x14   11x12   12x18   11x18    8x10       13x10 

IC-No DPs           12x16   13x14   12x10   13x12   11x18    8x10     13x8 

IC-25% DPs           9x16     9x14    12x10   12x12   11x18    8x10      13x8 

IC-33% DPs           11x16   10x14   12x10   11x12    9x18     8x10      13x8 

IC-50% DPs           9x18     7x14    11x12   11x16    7x18     8x10     13x10 

ICS-No DPs           9x16     4x14     9x10     9x12     5x18     7x10     8 x10 

ICS-25% DPs          7x16     4x14     8x10     8x12     3x18     6x10     8x10 

ICS-33% DPs          6x16     4x14     8x10     7x12     3x18     6x10     8x10 

ICS-50% DPs          5x16     3x14     7x10     6x12     3x18     6x10     7x10 

ICS-EV-No DPs     5x16     3x14     8x10     7x12     3x18     5x10     6x12 

ICS-EV-25% DPs   4x16     3x14     8x10     7x12     3x18     5x10     6x12 

ICS-HI-No DPs      8x9       6x6      8x10      9x7      11x7      4x8       8x6 

ICS-HI-25% DPs    7x9       6x6      8x10      9x7      11x7      4x8       8x6 

 

Table 3: Area (in terms of number of functional units) for mapping benchmarks onto 

several fabric architectures. 
 

 

 enc dec row col gsm sob lap 

std-No DPs 272 224 180 240 324 100 120 
std-25% DPs 256 210 130 180 270 90 104 

std-33% DPs 256 196 156 192 288 100 112 

std-50% DPs 160 140 132 216 198 80 130 

IC-No DPs 192 182 120 156 198 80 104 
IC-25% DPs 144 126 120 144 198 80 104 

IC-33% DPs 176 140 120 132 162 80 104 

IC-50% DPs 180 98 132 176 126 80 130 

ICS-No DPs 144 56 90 108 90 70 80 
ICS-25% DPs 112 56 80 96 54 60 80 

ICS-33% DPs 96 56 80 84 54 60 80 

ICS-50% DPs 80 42 70 72 54 60 70 

ICS-EV-No DPs 80 42 80 84 54 50 72 
ICS-EV-25% DPs 64 42 80 84 54 50 72 

ICS-HI-No DPs 72 36 63 77 32 42 48 
ICS-HI-25% DPs 63 36 63 77 32 42 48 

 

standard architectures as shown in Table 4, 5, 6 and 7. For example, the benchmarks implemented 

on standard architecture with no DPs used 20x18 size fabric whereas the same set of benchmarks 

can now be implemented on 9x18 fabric with ICS. 

 

Table 4: Minimum Fabric size (Width  x Height) for combination of IC and DP. 
Architecture  Fabric size(std)      Fabric size(IC)   %  Savings 

No  DPs 20x18  13x18  35 

25% DPs  16x18  13x18  19 

33% DPs  16x18  13x18  19 

50% DPs  13x18  13x18  0 
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Table 5: Minimum Fabric size (Width  x Height) for ICS with DP. 
Architecture     Fabric size(std)  Fabric size(ICS)  %  Savings 

No  DPs 20x18  9x18  55 

25% DPs  16x18  8x18  50 

33% DPs  16x18  8x18  50 

50% DPs  13x18  7x18  46 

 
 

Table 6: Minimum Fabric size (Width  x Height) for ICS-EV. 
Architecture     Fabric size  (std)  Fabric size  (ICS-EV)  %  Savings 

No  DPs 20x18  8x18  55 

25% DPs  16x18  8x18  50 

 
 
 

Table 7: Minimum Fabric size (Width  x Height) for ICS-HI. 
Architecture      Fabric size  (std)  Fabric size  (ICS-HI)  %  Savings 

No  DPs 20x18  11x9  73 

25% DPs  16x18  11x9  66 

 

Table 8 shows the percentage savings in terms of number of functional units per benchmark 

mapped onto standard, IC, ICS, and hybrid architectures. We computed the number of functional 

units required to map each benchmark for a particular architecture. We then compared every 

architectural option with our reference baseline architecture to obtain savings. The IC architecture 

requires 27% fewer functional units compared to the baseline. The ICS architecture provides 

savings of 52% in terms of functional units compared to the standard architecture. The ICS-EV 

architecture requires 62% fewer functional units than the baseline architecture.  The combination 

of ICS and 50% DPs needs 64% fewer functional units as compared to the baseline. 

 

Table 8:  Percentage area savings in terms of number of functional units per benchmark 

mapped onto standard, DP, ICS and hybrid architectures. 
 

 enc dec row col gsm sob lap average 

std-No DPs - - - - - - - - 
std-25% DPs 6 6 28 25 17 10 13 15 

std-33% DPs 6 13 13 20 11 0 7 10 

std-50% DPs 41 38 27 10 39 20 -8 24 

IC-No DPs 29 19 33 35 39 20 13 27 
IC-25% DPs 47 44 33 40 39 20 13 34 

IC-33% DPs 35 38 33 45 50 20 13 33 

IC-50% DPs 47 56 27 27 61 20 -8 31 

ICS-No DPs 47 75 50 55 72 30 33 52 
ICS-25% DPs 59 75 56 60 83 40 33 58 

ICS-33% DPs 65 75 56 65 83 40 33 60 

ICS-50% DPs 71 81 61 70 83 40 42 64 

ICS-EV-No DPs 71 81 56 65 83 50 40 64 
ICS-EV-25% DPs 76 81 56 65 83 50 40 65 

ICS-HI-No DPs 74 84 65 68 90 58 60 71 
ICS-HI-25% DPs 77 84 65 68 90 58 60 72 

 

Table 9:  Number of ALUs used as pass gates in standard (std),  integrated constants (IC), 

inputs coming from the side (ICS) and combination of DPs with std, IC, and ICS architectures 
 

 enc dec row col gsm sob lap 
std-No DPs 126 71 41 72 139 19 17 
std-25% DPs 65 23 14 26 69 5 2 

std-33% DPs 40 19 15 15 46 2 1 

std-50% DPs 21 5 10 8 25 3 2 

IC-No DPs 67 40 18 28 67 8 4 
IC-25% DPs 34 15 6 14 20 3 2 

IC-33% DPs 20 6 6 5 9 1 0 

IC-50% DPs 26 9 9 8 13 0 1 

ICS-No DPs 21 12 4 4 9 5 5 
ICS-25% DPs 6 3 0 0 0 0 0 

ICS-33% DPs 2 0 0 0 0 0 0 

ICS-50% DPs 0 0 0 0 0 0 0 

ICS-EV-No DPs 3 1 1 1 0 0 2 
ICS-EV-25% DPs 0 0 0 0 0 0 0 

ICS-HI-No DPs 5 0 3 3 0 3 0 
ICS-HI-25% DPs 0 0 0 0 0 0 0 
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Using the parameterized fabric model described in Section 3, we generated various instances of 

fabric architectures. We synthesized the fabric VHDL into Synopsys cell-based ASIC design with 

a feature size of 90 nm using Synopsys Design Compiler. Figure 14 shows the area consumption 

of standard, dedicated pass gates, ICS, and hybrid architectures having both ICS and DPs. The 

hybrid architecture with  ICS and 50% DPs consumes least area.  This architecture provides 61% 

area savings compared to the standard architecture with no DPs. 

 

 
Figure 14: Area consumption for various fabric architectures implemented on Synopsys 90nm 

ASIC process. 

 

We also examined the utilization of ALUs for pass operation for various fabric architecture 

implementations. In Table 9, we compare std, IC, ICS, ICS-EV, and a combination of DPs with 

these techniques.  The number of ALUs used as pass gates has been reduced significantly when 

we compare the architectures having a combination of ICS and DPs with the baseline 

architectures. Consider the case of ”gsm”, when we mapped this benchmark onto the standard 

fabric with no dedicated  pass gates, 139 out of 360 ALUs were being used for pass operation. 

When we added 33% dedicated pass gates to the architecture, the number of ALUs being used as 

pass gates was reduced to 46. When we introduced ICS also in the fabric, ALUs are no longer 

required for passing values down in the fabric. Even in the hybrid architecture with IC and ICS 

and extended vertical interconnect, only 2 functional units are used for passing information. 

 

We also conducted energy simulations on the architectures discussed in this paper. The energy 

results are shown in Figure 15. For each architecture, we compute energy for all the benchmarks 

examined and then compute average consumption over all the benchmarks. The combination of 

ICS and DPs consume least energy consumption. The hybrid-EV architecture also shows similar 

average energy consumption as ICS and DPs combination.  This architecture does not use any 

dedicated pass gates to pass information from producer to the consumer. Instead it has extended 

vertical interconnect that increase the reachability of the functional units.   The energy savings 

results for different fabric instances are shown in Table 10.  Energy was calculated by computing 

the product of the power and delay of the design. To calculate the power and delay of the design, 

the fabric VHDL is synthesized into Synopsys cell-based ASIC design with a feature size of 90 

nm using Synopsys Design Compiler. The post-synthesis design was simulated in Mentor 

Graphics ModelSim to calculate the delay of each design and these simulations were used as 

stimulus  to the Synopsys PrimeTime-PX tool to estimate the power consumption of the device. 

The fabric with  IC provides energy savings of 13% as compared to the standard fabric. With  
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ICS, we achieved energy savings of 27% as compared to the baseline architecture.  By having a 

combination of DPs and ICS, we achieved energy savings upto 32% as compared to the baseline 

architecture averaged over all benchmarks. ICS-EV fabric provides energy savings of 27%. 

 
Table 10: Energy savings (%) per benchmark mapped onto standard, DP, ICS and hybrid 

architectures. 
 

 enc dec row col gsm sob lap average 

std-No DPs - - - - - - - - 
std-25% DPs 21 28 4 6 20 7 13 14 

std-33% DPs 30 29 5 9 27 9 13 18 

std-50% DPs 37 38 3 6 30 8 9 19 

IC-No DPs 24 18 3 7 26 5 10 13 
IC-25% DPs 39 35 6 10 46 8 12 22 

IC-33% DPs 44 40 6 12 50 10 17 26 

IC-50% DPs 32 39 1 7 49 10 9 21 

ICS-No DPs 54 45 7 12 58 6 6 27 
ICS-25% DPs 60 52 8 15 62 10 9 31 

ICS-33% DPs 63 54 7 15 62 10 11 32 

ICS-50% DPs 63 54 7 13 62 10 6 31 

ICS-EV-No DPs 64 53 6 13 61 10 4 30 
ICS-EV-25% DPs 65 53 6 13 61 10 7 31 

ICS-HI-No DPs 62 57 6 13 62 10 8 31 
ICS-HI-25% DPs 63 57 6 13 62 10 8 31 

 

 

 

Table 11: Percentage area savings per benchmark mapped onto standard, DP, ICS and 

hybrid architectures. 
 

 enc dec row col gsm sob lap average 

std-No DPs - - - - - - - - 
std-25% DPs 4 4 26 23 15 8 12 13 

std-33% DPs 3 10 11 18 8 -2 4 7 

std-50% DPs 38 34 23 4 35 16 -14 19 

IC-No DPs 25 13 29 31 35 15 8 22 
IC-25% DPs 43 39 28 35 34 13 6 28 

IC-33% DPs 29 31 27 40 45 13 5 27 

IC-50% DPs 26 51 18 18 56 11 -21 23 

ICS-No DPs 46 75 49 54 72 29 32 51 
ICS-25% DPs 58 74 54 59 83 39 31 57 

ICS-33% DPs 63 74 54 64 83 38 31 58 

ICS-50% DPs 69 80 59 68 82 36 38 62 

ICS-EV-No DPs 70 81 55 64 83 49 39 63 
ICS-EV-25% DPs 76 81 54 64 83 49 38 63 

ICS-HI-No DPs 73 83 64 67 90 57 59 70 
ICS-HI-25% DPs 76 83 64 67 90 56 58 71 

 

 

4.1. Energy vs Area Tradeoffs 

This section presents energy vs area tradeoffs for the suite of benchmarks for standard, IC, ICS, 

and hybrid architectures. Table 10 shows the energy savings per benchmark for various fabric 

implementations. Our baseline architecture is “std-No DPs”. We compare all architectural options 

with our reference baseline architecture to obtain savings. On an average, the architecture with 

integrated constants provides 13% energy savings, the ICS and ICS-EV architectures pro- vide 

27% energy savings compared to the baseline. The combination of DPs and ICS can provide upto 

32% energy savings over the baseline architecture. 
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Figure 15: Energy comparison of standard, IC, ICS, ICS-EV, and hybrid architectures. 

Table 11 shows the percentage area savings. IC fabric provides 22% area savings as compared to 

the standard implementation.  The ICS and ICS-EV architectures achieve 51% and 60% area 

savings respectively.  The combination of ICS and DPs provides upto 62% energy savings when 

compared with baseline. 

Figure 16 shows the energy and area savings for various fabric architecture implementations for a 

suite of signal and image processing applications exam- ined here.  For each architecture, we 

show the energy and area savings that we achieve  over the baseline architecture averaged over all 

the benchmarks. The ICS option achieves more energy and area savings as compared to the IC 

architecture.  When ICS is combined with DPs, the level of energy and area improvements get 

even higher. The same level of area and energy savings can also be achieved using ICS-EV style. 

 

Figure 16: Area and energy savings for various fabric architectures compared to the baseline. 
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5. CONCLUSIONS 

In this paper, we discussed various styles of routing constants and variable inputs in a stripe-

based  coarse grained reconfigurable  fabric including (i)  integrated constants (IC) approach 

where constants are loaded in the registers local to the functional units; (ii) inputs coming from 

the side (ICS) where both constants and variable inputs can be routed to the stripe directly where 

needed; (iii)  ICS with extended vertical interconnect (ICS-EV); and (iv)  a combination of 

dedicated pass gates (DPs) with standard, IC, ICS, and ICS-EV architecture styles. We 

implemented these architecture styles using 90 nm ASIC process from Synopsys. We performed a 

detailed area and energy analysis on these architectures using signal processing benchmarks  from 

Mediabench benchmark suite and some of the image processing applications. We observed that 

the fabric with ICS and 50% DPs is the best among these options, providing 31% energy savings 

and 62% area savings over a baseline architecture for our benchmark set. 
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