
International Journal of VLSI design & Communication Systems (VLSICS) Vol.9, No.5, October 2018

DOI: 10.5121/vlsic.2018.9502 21

UVM BASED REUSABLE VERIFICATION IP FOR

WISHBONE COMPLIANT SPI MASTER CORE

Lakhan Shiva Kamireddy1 and Lakhan Saiteja K2

1Department of Electrical and Computer Engineering,

University of Colorado, Boulder, USA
2Indian Institute of Technology Kharagpur, West Bengal, India

ABSTRACT

The System on Chip design industry relies heavily on functional verification to ensure that the designs are
bug-free. As design engineers are coming up with increasingly dense chips with much functionality, the
functional verification field has advanced to provide modern verification techniques. In this paper, we
present verification of a wishbone compliant Serial Peripheral Interface (SPI) Master core using a System
Verilog based standard verification methodology, the Universal Verification Methodology (UVM). The
reason for using UVM factory pattern with parameterized classes is to develop a robust and reusable
verification IP. SPI is a full duplex communication protocol used to interface components most likely in
embedded systems. We have verified an SPI Master IP core design that is wishbone compliant and
compatible with SPI protocol and bus and furnished the results of our verification. We have used
QuestaSim for simulation and analysis of waveforms, Integrated Metrics Center, Cadence for coverage
analysis. We also propose interesting future directions for this work in developing reliable systems.

KEYWORDS

Functional Verification, QuestaSim, Reusable VIP, Simulation, SPI Master Core, Universal Verification
Methodology (UVM)

1. INTRODUCTION

With the ever-increasing complexity of designs, system level verification of large System on
Chips (SoC’s) has become complex [1]. These design complexities are accompanied with the
interdependencies of various functionalities, which make the design more susceptible to bugs.
Efficiently verifying the designs and reducing the time to market without compromising on the
targets of achieving bug-free designs is a herculean challenge to verification teams. Functional
verification is a process of ensuring that a design performs the tasks as intended by the overall
system architecture. With monotonically increasing costs of re-spins and requiring additional
manpower as well as development time, verification is the most critical phase in chip design
cycle. It takes nearly 70% of the total design cycle [1]. Design reuse and verification reuse are
essential in today’s constrained time-to-market requirements. Hence, the need to develop robust
and reusable verification IP arises.

Simulation-based verification is a standard and popularly used method of functional verification.
System Verilog (SV), the Hardware Description and Verification Language (HDVL) has massive
enhancements over Verilog, which provides several features to develop a fully functional
verification environment with support for artifacts like object oriented programming, coverage
analysis, constrained randomization and assertion based VIP. A methodological approach for
verification increases the efficiency and reduces the verification effort. In this paper, we use

International Journal of VLSI design & Communication Systems (VLSICS) Vol.9, No.5, October 2018

22

UVM, a System Verilog based methodology for testing an SPI master core that is wishbone
compliant.

The paper is organised into the following sections: Section II introduces the key features of SV
and UVM environment. In Section-III, we introduce the SPI Master IP core for which the UVM
framework is developed. Section-IV presents our approach towards the development of UVM
based VIP. Simulation results with snapshots and a critical discussion of the limitations of the
design are presented in Section-V. A conclusion is drawn in Section-VI.

2. SYSTEM VERILOG AND UVM ENVIRONMENT

Traditional testbenches were Verilog based and were not meant to verify complex SoC designs.
The verification efforts were carried out by designers themselves by merely applying a sequence
of critical stimulus elements to the Device Under Test and match the result to the expected
outcome. As chip size kept decreasing, chip function became more complicated, and verification
effort dominated the design process. Conventional methodology proved futile in verifying
complex modern designs. When Verilog was declared an IEEE standard, the Accellera Systems
Initiative had come up with revised versions of Verilog [2]. To cater modern verification needs,
many proprietary verification languages were developed. Consequently, System Verilog was
developed by Accellera, by extending Verilog with many of the features of Superlog and C
languages. Subsequently, a substantial number of verification capabilities were added to System
Verilog. System Verilog also borrowed many features from the C language, C++, Vera C and
VHDL with support for complete verification [2].

In [2], Peter Flake et al. presented the features of System Verilog while discussing reasons for
particular language design choices. Not only with inbuilt support for object-oriented
programming, but also importing features of several domain specific languages, System Verilog
stands as a popular digital HDVL. Some useful features are- code interface allowing someone
reusing code to concentrate on the features the code provides, not on how the code is
implemented, virtual interfaces, coverage driven constrained random verification, assertions,
clocking blocks, functional coverage constructs [4].

Fig. 1. UVM Testbench Architecture

In the evolutionary stages of System Verilog, the choice of verification methodology was strongly
related to the choice of tool vendor. To achieve vendor independence, Accellera Systems

International Journal of VLSI design & Communication Systems (VLSICS) Vol.9, No.5, October 2018

23

Initiative took up the task of creating an open standard methodology that could be used with all
major vendors’ tools. The result is the well known Universal Verification Methodology.

UVM is an open-source library which is portable to any HDL simulator that supports System
Verilog. It provides a rich base class library thus supporting the construction and deployment of
verification components (VCs) and testbenches, massively reducing the coding effort [5].

A VC is a ready to use component, which is reusable. VCs share a set of conventions and consist
of a complete set of elements for stimulating, checking and collecting coverage. The stimulus
provided to the DUT through a VC verifies protocol implementation and design architecture. Fig.
1 (Gayathri M 2016 [7]) shows a generic UVM testbench architecture. The top-level module in a
UVM testbench comprises of a DUT, and a testbench is connected to it.

2.1. UVM Testbench

UVM testbench comprises of sequence item, sequencer, driver, monitor, agent, scoreboard,
environment, test suite.

2.1.1. Top Testbench

Testbench comprises of instantiations of DUT modules and interfaces that connect DUT with
testbench. Transaction Level Modeling (TLM) interfaces in UVM are a great resource to
implement communication function calls for transmitting and receiving transactions among
modules.

2.1.2. Test

Test component is a class under testbench. Typical tasks performed in this are applying the
stimulus to DUT by invoking sequences, configuring values in config class. Test class instantiates
the top level environment.

2.1.3. Environment

Environment (env as illustrated above) is a reusable component class that aggregates scoreboards,
agents and other UVM verification environments together.

2.1.4. Agent

The Agent as seen in the above illustration aggregates several verification components such as
sequencer, driver and monitor. Agents can also include components like protocol checkers, TLM
model, coverage collectors.

2.1.5. Sequence Item

A sequence item is an object modelling the information packet transmitted between two
components sometimes referred to as a transaction in the UVM hierarchy. It is written extending
sequence item class.

2.1.6. Sequence

A Sequence is an object that is used to generate a set of sequence items to be sent to the driver.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.9, No.5, October 2018

24

2.1.7. Sequencer

Sequencer takes sequence items from the sequences generated and gives it to the driver.
Sequencer and driver use TLM interface functions namely seq item export and seq item import to
connect with one another.

2.1.8. Driver

A Driver is an object which drives the DUT pins based on the sequence items received from the
sequencer. It converts the sequences into bitwise values and drives the data onto DUT pins.

2.1.9. Monitor

The Monitor takes the DUT bit level values and converts them into sequence items that need to
be sent to the other UVM components such as the scoreboard and coverage classes. Monitor uses
analysis port for this purpose, and it performs a broadcast operation.

2.1.10. Scoreboard

The Scoreboard implements checker functionality. The checker matches the response of DUT
with an expected response. It fetches the expected response from a reference module and receives
output transactions from the monitor.

A detailed description of all the UVM features can be found in [3].

Fig. 2. SPI Master IP Core

3. SPI MASTER CORE

Serial Peripheral Interface is a communication protocol that facilitates full duplex communication
between a master that is usually a microcontroller unit and a slave that is usually a small
peripheral device. Communication can happen from master to slave and vice versa. Fig. 2. (S.
Simon 2004 [6]) represents the SPI Master Core with three parts [6]. The SPI bus is used to send
and receive data between master and slave that could usually be a microcontroller and a small

International Journal of VLSI design & Communication Systems (VLSICS) Vol.9, No.5, October 2018

25

peripheral unit respectively. When compared to other protocols, the SPI protocol has the
advantage of relatively high transmission speed, simple to use and uses a small number of signal
pins. The protocol divides the devices into master and slave for transmitting and receiving the
data. The protocol uses a master device to generate separate clock and data signal lines, along
with a chip select line to select the slave device for which the communication has to be
established. If there is more than one slave device present, the master device must have multiple
slave select interfaces to control the devices.

Fig. 3. Clock generator RTL view

There are two data transfer lines. One line responsible for data transfer is Master Out Slave In.
The other is Master In Slave Out. Serial Clock (SCLK) is the clock synchronization line, and
Slave Select is analogous to chip select. These are the four signals of an SPI bus interface. The
configuration of Master Out Slave In (MOSI) line is as an output in a master and as an input in a
slave. It facilitates one-way data transmission from master to the slave. The configuration of the
Master In Slave Out (MISO) line is as an input in a master and as an output in a slave. It
facilitates one-way data transmission from slave to the master. The MISO line remains undriven
in a high impedance state when a specific slave is not selected. The Slave Select (SS) is an active
low signal that is used as a chip-select line to select a particular slave. The Serial Clock line is
used to synchronize data exchange between the MOSI and MISO lines. The required number of
bit clock cycles are generated by master depending on the number of bytes transacted between
Master and Slave.

The wishbone compliant master core can be seen as organized into three components, namely
wishbone interface, clock generator and serial interface [6]. The synthesised RTL view of the
clock generator is illustrated in Fig. 3. The serial clock(sclk) is generated by scaling the external
system clock(wbclk) with the desired frequency factor as configured by Clock Divider register.
The expression of this division is as follows:

fsclk = fwbclk / (DIVIDER + 1) * 2 (1)

The serial data transfer module is responsible for interchanging serial MISO data with parallel
data by enforcing appropriate conversion techniques. The top-level module of the SPI Master IP
Core has full control over the clock generator and the serial data transfer module.

The SPI master core is our candidate for Design Under Test. We modified an opencores standard
SPI Master IP Core design to produce a suitable DUT. The DUT is verified in conjunction with
the SPI slave. The approach we took to verify DUT is to send data from both master and slave
endpoints. After the transfer is complete, we verify the interchanged data at both ends. Fig. 4
shows the UVM testbench for the DUT.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.9, No.5, October 2018

26

Fig. 4. UVM Testbench

The top-level module is responsible for connecting the testbench with the DUT. The environment
contains both the agent and the scoreboard. The agent is created using uvm agent virtual base
class. In the build phase, the agent builds sequencer, driver and monitor components. We
enforced randomization on the sequence items. The wishbone bus functional model at the driver
side transfers transactional level packets into wishbone specific pin level data.

4. DEVELOPMENT OF UVM BASED VIP

The architecture of UVM environment begins with a sequence item. Sequence item is a class
object usually extended from uvm transaction or uvm sequence item classes. It consists of all the
required data transfers that can be randomized or constrained to the specified boundary by using
UVM constructs. Sequences are extended from uvm sequence and generate multiple sequence
items. The generated sequences are taken to the driver to drive DUT pins. SPI master core driver
consists of tasks. The first step in the driver is to get the next sequence item. Secondly, we drive
the transfer of data. Thirdly, we write the packet to UVM analysis port, and we are done with the
sequence item. The tasks are run simultaneously through a fork...join call. The design of the
testbench involves the development of a monitor, which observes the communication of the DUT
with the testbench. It observes the pin level transaction at the outputs of the DUT and reports an
error if the protocols are violated. The agent connects all these UVM components. The prediction
of the DUT’s expected output is made in the monitor, and the scoreboard compares the predicted
response with the DUT’s actual response. The instantiation and connection of agent and
scoreboard are done in the env class.

All UVM classes contain different simulation phases as enumerated here.

4.1. BUILD PHASE

The build phase instantiates all the UVM components and is executed at the start of the UVM
testbench simulation.

4.2. CONNECT PHASE

The connect phase makes connections among the subcomponents. Testbench connections are
made using TLM ports.

4.3. ELABORATION PHASE

Connections are checked in the elaboration phase, address ranges, values and pointers are set up.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.9, No.5, October 2018

27

4.4. SIMULATION PHASE

Initial runtime configurations are set up in this phase, UVM testbench topology is checked for
correctness.

Fig. 5. Simulation Waveform of SPI Master Core

4.5. RUN PHASE

Run phase is the main execution phase where all the simulations are run. This phase starts at time
0.

4.6. EXTRACT PHASE

This phase extracts data from the DUT and the scoreboard and prepares final statistics.

4.7. REPORT PHASE

The Report phase is used to furnish simulation results for the verification engineer’s perusal.

5. RESULTS AND DISCUSSIONS

Simulations are done and analysed using QuestaSim. Simulation waveforms are shown in Fig. 5
where we drive the DUT using the Driver component of the VIP.

While [8] also presents a UVM based verification of SPI Master Core, we have achieved an
improvement over others by adopting constrained random simulation and using an effective set of
assertions to capture the designer’s intent very well. We propose effective directions for future
work in designing highly reliable systems. Another recent work on this topic is by Ustoglu et al.
in [11] but since the paper is in Turkish language, it is very hard to read it due to the language
gap. In [12], Ni et al. present their analysis on reusability of UVM platform and test cases. They
presented a reusable verification platform for I2C protocol. The protocol we worked with uses
SPI for communication. When compared with I2C, SPI supports higher speeds of ommunication.
Besides this, SPI protocol is inherently full-duplex whereas I2C is half-duplex. We did not catch
any bugs in the original opencores design, and that is right in this case, as this is a pre-verified
SPI master core IP. However, when we intentionally introduced a bug into the RTL design, we
were able to catch this bug using our simulation VIP. We performed the post verification analysis
in IMC, a coverage analysis tool that returned a coverage of 92.31%

International Journal of VLSI design & Communication Systems (VLSICS) Vol.9, No.5, October 2018

28

Our limitations are as follows:

1) At any instance of time, only one master can communicate in SPI.
2) Hot swapping is not supported by SPI, which refers to dynamically adding modules.
3) If at all an error creeps into the protocol, there is no error checking capability like the

parity bit built into the protocol.
4) When we operate in a multi-slave model, we would require a separate SS line for each

slave, which can get cumbersome when the number of slaves is large.
5) We do not receive an acknowledgement for successful data reception in SPI

communication protocol.

The data transfer protocol is illustrated in Fig. 6 (S. Simon 2004 [6]).

Fig. 6. Data Transfer Protocol

6. CONCLUSION

In this paper, we have developed a reusable verification IP for SPI master core that is wishbone
compliant. We made use of System Verilog and UVM to propose a reusable testbench that is
comprised of Driver, Monitor, SPI slave, scoreboard, agent, environment, coverage analysis and
assertions using OOP. Moreover, Constrained Randomization technique is used to achieve wider
functional coverage. The results from our simulation-based verification prove the effectiveness of
the proposed VIP. This pre-verified SPI Master core IP can be plugged into SOC as it is. This
verification component can be reused across the project for verification of other IP

Simulation-based verification is effective for verifying large systems, but does not give a
guaranteed proof of correctness. On the other hand, formal verification gives us a guaranteed
proof of correctness by exhaustively covering the state space to unravel corner case bugs but does
not scale well, at some point verification gets cumbersome due to state space explosion problem.

In future, consider using formal verification as a complementary step to simulation to improve the
confidence of the verified system. The idea is to inject formal analysis into simulation
environments. This is referred to by different names, but we prefer to use the name Directed
Explicit Model Checking [9]. We start with an A* algorithm and define some heuristics (details

International Journal of VLSI design & Communication Systems (VLSICS) Vol.9, No.5, October 2018

29

of the heuristic is out of the scope of this work) to propagate our search in the direction of a
particular failure situation. Then we employ model checking with this particular state as our
starting state. Because of this, counterexamples will be shorter and the state space explored will
be smaller, thereby solving our state space explosion problem largely. In [10] also authors
propose a Simulation-Guided Formal Analysis approach to bridge the gap between formal
techniques and simulation-based methods by leveraging the data obtained from simulations.

ACKNOWLEDGEMENTS

The authors would like to thank our colleagues and friends for supporting us in this work. We
would also like to extend our gratitude and thanks to the Electrical and Computer Engineering
departments at our educational institutions that provided us with the resources without which we
would not have been able to achieve it.

REFERENCES

[1] J. A. Abraham and D. G. Saab, Tutorial T4A: Formal Verification Techniques and Tools for Complex

Designs, pp 6-6, 20th International Conference on VLSI Design (VLSID’07), 2007.

[2] S. Sutherland, S. Davidmann, and P. Flake, SystemVerilog for Design: A Guide to Using

SystemVerilog for Hardware Design and Modeling, 2nd ed. Springer Publishing Company,
Incorporated, 2010.

[3] IEEE Standard for Universal Verification Methodology Language Reference Manual, 2017.

[4] Z. Zhou, Z. Xie, X. Wang, and T. Wang, Development of verification environment for SPI master

interface using SystemVerilog, vol. 3, pp 2188-2192, 2012 IEEE 11th International Conference on
Signal Processing, 2012.

[5] J. Bromley, If SystemVerilog is so good, why do we need the UVM?, pp 1-7, Proceedings of the 2013

Forum on specification and Design Languages (FDL), 2013.

[6] S. Simon, SPI Master Core Specification, pp 1-13, www.opencores.org, 2004.

[7] G. M, R. Sebastian, S. R. Mary, and A. Thomas, A SV-UVM framework for Verification of SGMII

IP core with reusable AXI to WB Bridge UVC, vol. 01, pp 1-4, 2016 3rd International Conference on
Advanced Computing and Communication Systems (ICACCS), 2016.

[8] Parthipan, Deepak Siddharth, UVM Verification of an SPI Master Core, (2018). Thesis. Rochester

Institute of Technology. Accessed from http://scholarworks.rit.edu/theses/9793.

[9] Edelkamp S., Lafuente A.L., Leue S. (2001) Directed explicit model checking with HSF-SPIN. In:

Dwyer M. (eds) Model Checking Software. SPIN 2001. Lecture Notes in Computer Science, vol
2057. Springer, Berlin, Heidelberg

[10] James Kapinski, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, and Nikos Arechiga. 2014.

Simulation-guided lyapunov analysis for hybrid dynamical systems. In Proceedings of the 17th
international conference on Hybrid systems: computation and control (HSCC ’14). ACM, New
York, NY, USA

[11] Ustoglu B., Bagbaba A.C., Ors B., Erdem I. (2015) Creating test environment with UVM for SPI. pp
2373-2376, 2015, In Signal processing and communications applications conference (SIU), Maltaya,
Turkey

[12] W. Ni and J. Zhang, Research of reusability based on UVM verification, pp 1-4, 11th IEEE

Conference on ASIC (ASICON), 2015, Chengdu, China.

