Volume 11, Number 4
Fast Fluid Thermodynamics Simulation by Solving Heat Diffusion Equation
Authors
Wanwan Li, George Mason University, USA
Abstract
In mechanical engineering educations, simulating fluid thermodynamics is rather helpful for students to understand the fluid’s natural behaviors. However, rendering both high-quality and realtime simulations for fluid dynamics are rather challenging tasks due to their intensive computations. So, in order to speed up the simulations, we have taken advantage of GPU acceleration techniques to simulate interactive fluid thermodynamics in real-time. In this paper, we present an elegant, basic, but practical OpenGL/SL framework for fluid simulation with a heat map rendering. By solving Navier-Stokes equations coupled with the heat diffusion equation, we validate our framework through some real-case studies of the smoke-like fluid rendering such as their interactions with moving obstacles and their heat diffusion effects. As shown in Fig. 1, a group of experimental results demonstrates that our GPU-accelerated solver of Navier-Stokes equations with heat transfer could give the observers impressive real-time and realistic rendering results.
Keywords
Fluid Simulation, Navier-Stokes Equations, OpenGL/SL, Thermodynamics.